首页 | 官方网站   微博 | 高级检索  
     


Structure, properties, and thermal stability of nanocrystallite Fe-Ti-N soft magnetic films
Authors:Li  D You-Song Gu Xiang-Rong Chang Fu-Shen Li Li-Jie Qiao Zhong-Zhuo Tian Fang  G-D Qing-Shan Song
Affiliation:Dept. of Mater. Phys., Univ. of Sci. & Technol. Beijing, China;
Abstract:We deposited Fe-Ti-N magnetic films with a high sputtering power of 7 W/cm/sup 2/. When the composition of the films was in the range of Fe-Ti(3.9 at.%)-N(8.8 at.%) to Fe-Ti(3.3 at.%)-N(13.5 at.%), the films were composed of /spl alpha/' and Ti/sub 2/N precipitates. With the addition of nitrogen, 4/spl pi/M/sub s/ became higher than that of pure iron, reaching a maximum of 23.8 kG. At the same time, H/sub c/ was reduced to a minimum of 1.12 Oe. The best films can meet the needs of the recording head in dual-element giant magnetoresistive/inductive heads, yielding high storage density (10 Gb/in/sup 2/). The incorporation of N in /spl alpha/-Fe brought about the /spl alpha/' phase with its higher saturation magnetization. Ti additions inhibited the equilibrium decomposition /spl alpha/'/spl rarr//spl alpha/+/spl gamma/'. Because H/sub C//sup D//spl prop/D/sup 6/, where D is average grain diameter, grain size control is very important. The nitrogen induces severe distortion of the /spl alpha/' lattice, which can cause the grains to break into pieces and reduce the grain size. High sputtering power also led to the formation of fine grains, with diameter in the order of 14 nm. Probably Ti/sub 2/N is preferentially precipitated on the grain boundary, pinning the grain boundary and stabilizing the grain size during high-temperature heat treatment. The temperature limit for stability of the structure and its associated low coercivity was not less than 520/spl deg/C.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号