首页 | 官方网站   微博 | 高级检索  
     


Modeling Constitutive Relationship of Cu-0.4 Mg Alloy During Hot Deformation
Authors:Guoliang Ji  Guang Yang  Lei Li  Qiang Li
Affiliation:1. School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
2. Wanfang College of Science and Technology, Henan Polytechnic University, Jiaozuo, 454000, China
Abstract:For predicting the high-temperature deformation behavior in a Cu-0.4 Mg alloy, the true stress-strain data from isothermal hot compression tests on a Gleeble-1500 thermo-mechanical simulator, in a wide range of temperatures (500, 600, 700, 750, and 800 °C) and strain rates (0.005, 0.01, 0.1, 1, 5, and 10 s?1), were employed to develop the Arrhenius-type constitutive model and the artificial neural network (ANN) constitutive model. Furthermore, prediction ability of the two models for high-temperature deformation behavior was evaluated. Correlation coefficients (R) between the experimental and predicted flow stress for the Arrhenius-type constitutive model and the ANN constitutive model are 0.9860 and 0.9998, respectively, and average absolute relative errors between the experimental and predicted flow stress for these two models are 5.3967% and 0.7401%, respectively. Results show that the ANN constitutive model can accurately predict the high-temperature deformation behavior over a wider range of temperatures and strain rates, while for the Arrhenius-type constitutive model there is greater divergence in the regime of high strain rates and low temperatures.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号