首页 | 官方网站   微博 | 高级检索  
     


Integration of design and manufacturing for structural shape optimization
Affiliation:1. School of Aerospace and Mechanical Engineering, The University of Oklahoma, 865 Asp Avenue, Room 201, Norman, OK 73019, USA;2. Altair Engineering, 1757 Maplelawn Drive Troy, MI 48084, USA;1. Université Tunis El Manar, Laboratoire de Photovoltaïque et Matériaux Semi-conducteurs, ENIT, BP 37, Le belvédère, 1002 Tunis, Tunisia;2. Institut Préparatoire aux Etudes d’Ingénieurs de Tunis Montfleury, Université de Tunis, Tunisia
Abstract:This paper presents an integrated design and manufacturing approach that supports shape optimization of structural components. The approach starts from a primitive concept stage, where boundary and loading conditions of the structural component are given to the designer. Topology optimization is conducted for an initial structural layout. The discretized structural layout is smoothed using parametric B-Spline surfaces. The B-Spline surfaces are imported into a CAD system to construct parametric solid models for shape optimization. Virtual manufacturing (VM) techniques are employed to ensure that the optimized shape can be manufactured at a reasonable cost. The solid freeform fabrication (SFF) system fabricates physical prototypes of the structure for design verification. Finally, a computer numerical control (CNC) machine is employed to fabricate functional parts as well as mold or die for mass production of the structural component. The main contribution of the paper is incorporating manufacturing into the design process, where manufacturing cost is considered for design. In addition, the overall design process starts from a primitive stage and ends with functional parts. A 3D tracked vehicle roadarm is employed throughout this paper to illustrate the overall design process and various techniques involved.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号