首页 | 官方网站   微博 | 高级检索  
     


Synthesisof fructose laurate esters catalyzed by a CALB-displaying Pichia pastoris whole-cell biocatalyst in a non-aqueous system
Authors:Jin  Zi  Liang  Shuli  Zhang  Xiuqin  Han  Shuangyan  Ren  Changqiong  Lin  Ying  Zheng  Suiping
Affiliation:1511.Department of Bioengineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510-006, China
;
Abstract:

Earlier studies on fructose laurate ester products have shown that recombinant Pichia pastoris displaying Candida antarctica lipase B (CALB) on the cell surface acts as an efficient whole-cell biocatalyst for sugar ester production from fructose and lauric acid in an organic solvent. The effects of various reaction factors, including solvent composition, substrate molar ratio, enzyme dose, temperature and water activity, on esterification catalyzed by the CALB-displaying P. pastoris whole-cell biocatalyst were examined in the present study. Under the preferred reaction conditions, specifically, 5 mL organic solvent mixture of 2-methyl-2-butanol/DMSO (20% v/v), 2 mmol fructose with a lauric acid to fructose molar ratio of 2:1, 0.3 g whole-cell biocatalyst (1,264 U/g dry cell) with an initial water activity of 0.11, 1.2 g 4Å molecular sieve, reaction temperature of 55oC and 200 rpm stirring speed, the fructose mono laurate ester yield was 78% (w/w). The CALBdisplaying P. pastoris whole-cell biocatalyst exhibited good operational stability, with an evident increase, rather than decrease, in relative activity after the continuous recover and reuse cycle. The relative activity of the biocatalyst remained 50% higher than that of the first batch, even following reuse for 15 batches. Our results collectively indicate that the CALB-displaying P. pastoris whole-cell biocatalyst may be potentially utilized in lieu of free or immobilized enzyme to effectively produce non-ionic surfactants such as fatty acid sugar esters, offering the significant advantages of cost-effectiveness, good operational stability and mild reaction conditions.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号