首页 | 官方网站   微博 | 高级检索  
     


Temporal convolutional network with soft thresholding and attention mechanism for machinery prognostics
Affiliation:1. School of Mechanical Engineering, Southeast University, Nanjing 211189, China;2. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract:Remaining useful life (RUL) prediction is a challenging task for prognostics and health management (PHM). Due to the complexity physics involved for precisely modeling the machine degradation process, learning-based data-driven methods, which learn the degradation pattern solely from the historical data without referring to physical models, have become promising alternatives to model-based prognostic methods. In this paper, a new temporal convolutional neural network (TCN) with soft threshold and attention mechanism is proposed for machinery prognostics. Multi-channel sensor data are directly used as inputs to the prognostic network without feature extraction as a pre-processing step. A soft thresholding mechanism is embedded in the network, serving as a flexible activation function for certain layers to preserve useful features. The threshold value is adaptively learned by a subnetwork trained with the attention mechanism instead of assigning a deterministic value to the threshold. As a result, each feature map is assigned a customized threshold value such that the network training process can focus on features that are more critical to RUL prediction. To verify the generalization ability of the proposed method, three benchmark datasets related to rolling bearings and cutting tools are tested, and the performance of the developed method is compared with several state-of-the-art prognostic approaches. The results show that for all the three case studies, the developed method has produced accurate RUL prediction with good robustness and generalization ability.
Keywords:RUL prediction  Temporal convolution network  Soft thresholding  Attention mechanism
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号