首页 | 官方网站   微博 | 高级检索  
     


Ab initio and periodic DFT investigation of hydrogen storage on light metal-decorated MOF-5
Authors:Mudit DixitTuhina Adit Maark  Sourav Pal
Affiliation:a Electronic Structure Theory Group, Physical Chemistry Division, National Chemical Laboratory, Homi Bhabha Road, Pune 411 008, India
b Division of Materials Theory, Department of Physics and Astronomy, Uppsala Universitet, Box 530, SE 75120, Uppsala, Sweden
Abstract:The effect of light metal (M = Li, Be, Mg, and Al) decoration on the stability of metal organic framework MOF-5 and its hydrogen adsorption is investigated by ab initio and periodic density functional theory (DFT) calculations by employing models of the form BDC:M2:nH2 and MOF-5:M2:nH2, where BDC stands for the benzenedicarboxylate organic linker and MOF-5 represents the primitive unit cell. The suitability of the periodic DFT method employing the GGA-PBE functional is tested against MP2/6-311 + G* and MP2/cc-pVTZ molecular calculations. A correlation between the charge transfer and interaction energies is revealed. The metal-MOF-5 interactions are analyzed using the frontier molecular orbital approach. Difference charge density plots show that H2 molecules get polarized due to the charge generated on the metal atom adsorbed over the BDC linker, resulting in electrostatic guest-host interactions.Our solid state results show that amongst the four metal atoms, Mg and Be decoration does not stabilize the MOF-5 to any significant extent. Li and Al decoration strengthened the H2-MOF-5 interactions relative to the pure MOF-5 exhibited by the enhanced binding energies. The hydrogen binding energies for the Li- and Al-decorated MOF-5 were found to be sensible for allowing reversible hydrogen storage at ambient temperatures. A high hydrogen uptake of 4.3 wt.% and 3.9 wt.% is also predicted for the Li- and Al-decorated MOF-5, respectively.
Keywords:Ab initio calculations  Density functional theory  Hydrogen storage  Hydrogen binding energies  Metal-Pi-Arene interactions
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号