首页 | 官方网站   微博 | 高级检索  
     


Relationships between base-catalyzed hydrolysis rates or glutathione reactivity for acrylates and methacrylates and their NMR spectra or heat of formation
Authors:Fujisawa Seiichiro  Kadoma Yoshinori
Affiliation:Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan; E-Mail: fujisawa33@nifty.com.
Abstract:The NMR chemical shift, i.e., the π-electron density of the double bond, of acrylates and methacrylates is related to the reactivity of their monomers. We investigated quantitative structure-property relationships (QSPRs) between the base-catalyzed hydrolysis rate constants (k1) or the rate constant with glutathione (GSH) (log k(GSH)) for acrylates and methacrylates and the (13)C NMR chemical shifts of their α,β-unsaturated carbonyl groups (δC(α) and δC(β)) or heat of formation (Hf) calculated by the semi-empirical MO method. Reported data for the independent variables were employed. A significant linear relationship between k1 and δC(β), but not δC(α), was obtained for methacrylates (r(2) = 0.93), but not for acrylates. Also, a significant relationship between k1 and Hf was obtained for both acrylates and methacrylates (r(2) = 0.89). By contrast, log k(GSH) for acrylates and methacrylates was linearly related to their δC(β) (r(2) = 0.99), but not to Hf. These findings indicate that the (13)C NMR chemical shifts and calculated Hf values for acrylates and methacrylates could be valuable for estimating the hydrolysis rate constants and GSH reactivity of these compounds. Also, these data for monomers may be an important tool for examining mechanisms of reactivity.
Keywords:acrylate and methacrylate esters  base-catalyzed hydrolysis  GSH reaction rate constants  13C NMR spectra  heats of formation  QSPRs
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号