首页 | 官方网站   微博 | 高级检索  
     


Crystal growth in dental enamel: the role of amelogenins and albumin
Authors:C Robinson  SJ Brookes  J Kirkham  WA Bonass  RC Shore
Affiliation:Division of Oral Biology, Leeds Dental Institute, University of Leeds, UK.
Abstract:Amelogenin-mineral interactions were investigated using an in vitro binding approach. Rat incisor enamel matrix proteins (mainly amelogenins) were dissolved in synthetic enamel fluid and allowed to equilibrate with deproteinised developing enamel crystals. The results showed that amlogenin proteins of 21, 23, 24, 26 and 27-kDa (corresponding to nascent and partially degraded amelogenins) were associated with the crystals whilst the lower Mr amelogenins (< 21 KDa) remained free in the synthetic enamel fluid. These data suggest the nascent and partially degraded amelogenins may interact with developing enamel crystals and could influence their growth. Albumin-mineral interactions were investigated by extracting developing rat incisor enamel with synthetic enamel fluid. Insoluble material (including the enamel crystals) was then further extracted with 0.1 M phosphate buffer (pH 7.4) to desorb any mineral bound proteins. Western blotting using anti-albumin antibodies showed that almost all of the albumin from the secretory stage enamel and a significant proportion of the albumin present in early transition stage was extractable in the synthetic enamel fluid. However, synthetic enamel fluid did not extract albumin from late transition or maturation stage tissue, which could only be removed following further extraction with phosphate buffer. Albumin degradation was apparent during the transition and maturation stages, where it is degraded and ultimately removed. This binding pattern may be related to amelogenin degradation and removal during the transition stage, permitting albumin access to the previously obscured crystal surfaces. That the secretory stage matrix appears to "protect" secretory stage crystals from albumin may be an important consideration in the aetiology of enamel hypoplasias (i.e. incomplete crystal growth) and when using dissociative extraction procedures for the identification of mineral bound proteins.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号