首页 | 官方网站   微博 | 高级检索  
     


A graph partitioning strategy for solving large-scale crew scheduling problems
Authors:Email author" target="_blank">Silke?JütteEmail author  Ulrich?W?Thonemann
Affiliation:1.Department of Supply Chain Management and Management Science,University of Cologne,Cologne,Germany
Abstract:Railway crew scheduling deals with generating driver duties for a given train timetable such that all work regulations are met and the resulting schedule has minimal cost. Typical problem instances in the freight railway industry require the generation of duties for thousands of drivers operating tens of thousands of trains per week. Due to short runtime requirements, common solution approaches decompose the optimization problem into smaller subproblems that are solved separately. Several studies have shown that the way of decomposing the problem significantly affects the solution quality. An overall best decomposition strategy for a freight railway crew scheduling problem, though, is not known. In this paper, we present general considerations on when to assign two scheduled train movements to separate subproblems (and when to rather assign them to the same subproblem) and deduct a graph partitioning based decomposition algorithm with several variations. Using a set of real-world problem instances from a major European railway freight carrier, we evaluate our strategy and benchmark the performance of the decomposition algorithm both against a common non-decomposition algorithm and a lower bound on the optimal solution schedule. The test runs show that our decomposition algorithm is capable of producing high-quality solution schedules while significantly cutting runtimes compared to the non-decomposition solution algorithm. We are following a ”greenfield” approach, where no information on previous schedules is needed. Hence, our approach is applicable to any railway crew scheduling setting, including network enlargement, integration of new customers, etc.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号