首页 | 官方网站   微博 | 高级检索  
     


Release of Ciprofloxacin from Chondroitin 6-Sulfate-Graft-Poloxamer Hydrogel In Vitro for Ophthalmic Drug Delivery
Authors:M K Yoo  K Y Cho  H H Song  Y J Choi  J W Kwon  M K Kim  J H Lee  W R Wee  C S Cho
Affiliation:  a School of Agricultural Biotechnology, Seoul National University, Seoul, South Korea b Department of Ophthalmology, Seoul National University College of Medicine, Seoul, South Korea
Abstract:The system was designed to use Poloxamer as a vehicle for ophthalmic drug delivery using in situ gel formation property. To enhance the wound healing and cell adhesion as well as transparency of Poloxamer hydrogel, chondroitin 6-sulfate (C6S) was introduced into Poloxamer. For this purpose, mono amine-terminated Poloxamer (MATP), which was end-capped with ethylene amine group only in one side of terminal hydroxyl groups of Poloxamer, was synthesized. Subsequently, C6S-graft-Poloxamer copolymer (C6S-g-Poloxamer) was prepared by reaction between the amine groups of MATP and carboxyl groups of C6S in the presence of 1-ethyl-3-(3-dimethylaminopropyl)-carboimide (EDC). The coupling of MATP with C6S was clarified by 1H-NMR and FT-IR spectroscopy. The gelation temperature of graft copolymers was determined by measuring the temperature at which immobility of the meniscus in each solution was first noted. Release behavior of ciprofloxacin from C6S-g-Poloxamer hydrogel in vitro was investigated as a function of C6S content in the graft copolymer by a spectrophotometric assay at 287 nm using an UV spectrophotometer. Differences in the adhesion and morphology of human lens cell between Poloxamer- and C6S-g-Poloxamer-coated surfaces were also investigated. The gelation temperatures of C6S-g-Poloxamer copolymers were lowered with increasing of the concentration of the copolymer and decreasing of C6S content. The release of ciprofloxacin from the graft copolymer was sustained compared with Poloxamer itself and decreased with increasing the content of C6S in the copolymer due to the in situ gel formation of the copolymer and viscous properties of C6S. Human lens cells (B3) adhered to C6S-g-Poloxamer-coated surface were observed as transformed shapes after 2 days. The bioadhesive and thermally gelling of these graft copolymers will be expected to be an excellent drug carrier for the prolonged delivery to surface of the eye.
Keywords:Chondroitin 6-sulfate  Poloxamer 407  Ophthalmic drug delivery  Mucoadhesive  In situ gel formation
本文献已被 InformaWorld 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号