首页 | 官方网站   微博 | 高级检索  
     


Synthesis of flexible BaTiO3 nanofibers for efficient vibration-driven piezocatalysis
Abstract:The development of high-performance catalysts for applications in advanced oxidation processes to degrade organic pollutants can contribute significantly to environmental protection. However, current nanoparticle-based catalysts are energy consuming, hazardous, and unrecyclable, therefore the development of clean energy-driven and reusable catalysts with high performance remains challenging. Herein, flexible barium titanate (BTO) nanofibers were fabricated via a combination of electrospinning and sol-gel methods. The large surface area, interconnected porous structure, good piezoresponse, and relatively high piezoelectric coefficient endow the resultant BTO nanofibers membranes with good piezocatalytic degradation performance toward organic contaminants. With the assistance of ultrasonic waves, the membranes could degrade 96% of organic dyes within 60 min, with a reaction rate of 0.0537 min?1. The radical detection and trapping experiments proved that superoxide radicals and holes played vital roles in piezocatalytic reaction process. Furthermore, the flexible BTO nanofibrous membranes with a tensile strength of 2.2 MPa exhibited good reusability over five cycles, without the tedious recycling operations needed for micro/nanoparticle-based catalysts. The successful fabrication of BTO nanofibrous membranes would provide a route for the fabrication of clean energy-driven and high-performance catalysts for wastewater treatment.
Keywords:Barium titanate  Electrospinning  Flexibility  Nanofibrous membranes  Vibration-driven piezocatalytic performance
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号