首页 | 官方网站   微博 | 高级检索  
     


Biomimetic Locomotion of Electrically Powered “Janus” Soft Robots Using a Liquid Crystal Polymer
Authors:Yao‐Yu Xiao  Zhi‐Chao Jiang  Xia Tong  Yue Zhao
Abstract:Oriented liquid crystal networks (LCNs) can undergo reversible shape change at the macroscopic scale upon an order–disorder phase transition of the mesogens. This property is explored for developing soft robots that can move under external stimuli, such as light in most studies. Herein, electrically driven soft robots capable of executing various types of biomimetic locomotion are reported. The soft robots are composed of a uniaxially oriented LCN strip, a laminated Kapton layer, and thin resistive wires embedded in between. Taking advantage of the combined attributes of the actuator, namely, easy processing, reprogrammability, and reversible shape shift between two 3D shapes at electric power on and off state, the concept of a “Janus” soft robot is demonstrated, which is built from a single piece of the material and has two parts undergoing opposite deformations simultaneously under a uniform stimulation. In addition to complex shape morphing such as the movement of oarfish and sophisticated devices like self‐locking grippers, electrically powered “Janus” soft robots can accomplish versatile locomotion modes, including crawling on flat surfaces through body arching up and straightening down, crawling inside tubes through body stretching and contraction, walking like four‐leg animals, and human‐like two‐leg walking while pushing a load forward.
Keywords:electrically driven motion  liquid crystal networks  liquid crystal polymers  locomotion  reversible shape memory  soft robots
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号