首页 | 官方网站   微博 | 高级检索  
     


Comparison of precipitation products to observations in Tibet during the rainy season
Authors:Zhuo Ga  Za Dui  Duodian Luozhu  Jun Du
Affiliation:1. Lhasa Branch of Chengdu Institute of Plateau Meteorology, China Meteorological Administration, Lhasa, Tibet 850000, China;2. Tibet Climate Center, Tibet Meteorological Bureau, Lhasa, Tibet 850000, China;3. Lhasa Meteorological Bureau, Lhasa, Tibet 850000, China
Abstract:Precipitation is an important component of global water and energy transport and a major aspect of climate change. Due to the scarcity of meteorological observations, the precipitation climate over Tibet has been insufficiently documented. In this study, the distribution of precipitation during the rainy season over Tibet from 1980 to 2013 is described on monthly to annual time scales with meteorological observations. Furthermore, four precipitation products are compared to observations over Tibet. These datasets include products derived from the Asian Precipitation-Highly-Resolved Observational Data(APHRO), the Global Precipitation Climatology Centre(GPCC), the University of Delaware(UDel), and the China Meteorological Administration(CMA). The error, relative error, standard deviation, root-mean-square error, correlations and trends between these products for the same period are analyzed with in situ precipitation during the rainy season from May to September. The results indicate that these datasets can broadly capture the temporal and spatial precipitation distribution over Tibet. The precipitation gradually increases from northwest to southeast. The spatial precipitation in GPCC and CMA are similar and positively correlated to observations. Areas with the largest deviations are located in southwestern Tibet along the Himalayas. The APHRO product underestimates, while the UDel, GPCC, and CMA datasets overestimates precipitation on the basis of monthly and inter-annual variation. The biases in GPCC and CMA are smaller than those in APHRO and UDel with a mean relative error lower than 10% during the same periods. The linear trend of precipitation indicates that the increase in precipitation has accelerated extensively during the last 30 years in most regions of Tibet. The CMA generally achieves the best performance of these four precipitation products. Data uncertainty in Tibet might be caused by the low density of stations, complex topography between the grid points and stations, and the interpolation methods, which can also produce an obvious difference between the gridded data and observations.
Keywords:APHRO  GPCC  UDel  CMA  Tibet  precipitation  
本文献已被 CNKI 等数据库收录!
点击此处可从《寒旱区科学》浏览原始摘要信息
点击此处可从《寒旱区科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号