首页 | 官方网站   微博 | 高级检索  
     


Flow condensation in parallel micro-channels – Part 2: Heat transfer results and correlation technique
Authors:Sung-Min Kim  Issam Mudawar
Affiliation:Boiling and Two-Phase Flow Laboratory (BTPFL) and Purdue University International Electronic Cooling Alliance (PUIECA), Mechanical Engineering Building, 585 Purdue Mall, West Lafayette, IN 47907-2088, USA
Abstract:This second part of a two-part study concerns heat transfer characteristics for FC-72 condensing along parallel, square micro-channels with a hydraulic diameter of 1 mm, which were formed in the top surface of a solid copper plate. Heat from the condensing flow was rejected to a counter flow of water through channels brazed to the underside of the copper plate. The FC-72 condensation heat transfer coefficient was highest near the channel inlet, where the annual liquid film is thinnest. The heat transfer coefficient decreased along the micro-channel because of the film thickening and eventual collapse of the annular regime. Notable heat transfer enhancement was observed for annular flow regions of the micro-channel associated with interfacial waves. Comparing the present data to predictions of previous annular condensation heat transfer correlations shows correlations intended for macro-channels generally provide better predictions than correlations intended specifically for mini/micro-channels. A new condensation heat transfer coefficient correlation is proposed for annular condensation heat transfer in mini/micro-channels. The new correlation shows excellent predictive capability based on both the present FC-72 data and a large database for mini/micro-channel flows amassed from eight previous sources.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号