首页 | 官方网站   微博 | 高级检索  
     


Microstructural,mechanical and thermal shock properties of triple-layer TBCs with different thicknesses of bond coat and ceramic top coat deposited onto polyimide matrix composite
Authors:HR Abedi  M Salehi  A Shafyei
Affiliation:Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
Abstract:In this study, a triple-layer thermal barrier coating (TBC) of Cu-6Sn/NiCrAlY/YSZ was deposited onto a carbon-fiber reinforced polyimide matrix composite. Effects of different thicknesses of YSZ ceramic top coat and NiCrAlY intermediate layer on microstructural, mechanical and thermal shock properties of the coated samples were examined. The results revealed that the TBC systems with up to 300 µm top coat thicknesses have clean and adhesive coating/substrate interfaces whereas cracks exist along coating/substrate interface of the TBC system with 400 µm thick YSZ. Tensile adhesion test (TAT) indicated that adhesion strength values of the coated samples are inversely proportional to the ceramic top coat thickness. Contrarily, thermal shock resistance of the coated samples enhanced with increase in thickness of the ceramic coating. Investigation of the TBCs with different thicknesses of NiCrAlY and 300 µm thick YSZ layers revealed that the TBC system with 100 µm thick NiCrAlY layer exhibited the best adhesion strength and thermal shock resistance. It was inferred that thermal mismatch stresses and oxidation of the bond coats were the main factors causing failure in the thermal shock test.
Keywords:TBC  YSZ  NiCrAlY  Adhesion strength  Thermal shock  Residual stress
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号