首页 | 官方网站   微博 | 高级检索  
     


A new CMOS pixel structure for low-dark-current and large-array-size still imager applications
Authors:Yu-Chuan Shih Chung-Yu Wu
Affiliation:Dept. of Electron. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan;
Abstract:A pixel structure for still CMOS imager application called the pseudoactive pixel sensor (PAPS) is proposed and analyzed in this paper. It has the advantages of a low dark current, high signal-to-noise ratio, and a high fill factor over the conventional passive pixel sensor imager or active pixel sensor imager. The readout circuit called the zero-bias column buffer-direct-injection structure is also proposed to suppress both the dark current of the photodiode and the leakage current of row switches by keeping both biases of photodiode and the parasitic p-n junction in the column bus at or near zero voltage. The improved double delta sampling circuits are also used to suppress fixed pattern noise, clock feedthrough noise, and channel charge injection. An experimental chip of the proposed PAPS CMOS imager with the format of 352/spl times/288 (CIF) has been fabricated by using a 0.25-/spl mu/m single-poly-five-level-metal (1P5M) n-well CMOS process. The pixel size is 5.8 /spl mu/m/spl times/5.8 /spl mu/m. The pixel readout speed is from 100 kHz to 10 MHz, corresponding to the maximum frame rate above 30 frames/s. The proposed still CMOS imager has a fill factor of 58%, chip size of 3660 /spl mu/m/spl times/3500 /spl mu/m, and power dissipation of 24 mW under the power supply of 3.3 V. The experimental chip has successfully demonstrated the function of the proposed new PAPS structure. It can be applied in the design of large-array-size still CMOS imager systems with a low dark current and high resolution.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号