首页 | 官方网站   微博 | 高级检索  
     


Contributions of basaltic underplating to crustal growth in island arc and extensional tectonic settings in the Chinese Tianshan Orogenic Belt,NW China
Affiliation:1. MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, CAGS, Beijing 100037, China;2. School of Earth Science and Resources, Chang''an University, Xi''an 710054, China;3. Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China;1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, China;2. School of Earth, Atmosphere & Environment, Monash University, Melbourne, VIC 3800, Australia;3. College of Earth Science, Chengdu University of Technology, Chengdu 610059, China
Abstract:A mafic–ultramafic intrusive belt comprising Silurian arc gabbroic rocks and Early Permian mafic–ultramafic intrusions was recently identified in the western part of the East Tianshan, NW China. This paper discusses the petrogenesis of the mafic–ultramafic rocks in this belt and intends to understand Phanerozoic crust growth through basaltic magmatism occurring in an island arc and intraplate extensional tectonic setting in the Chinese Tianshan Orogenic Belt (CTOB). The Silurian gabbroic rocks comprise troctolite, olivine gabbro, and leucogabbro enclosed by Early Permian diorites. SHRIMP II U-Pb zircon dating yields a 427 ± 7.3 Ma age for the Silurian gabbroic rocks and a 280.9 ± 3.1 Ma age for the surrounding diorite. These gabbroic rocks are direct products of mantle basaltic magmas generated by flux melting of the hydrous mantle wedge over subduction zone during Silurian subduction in the CTOB. The arc signature of the basaltic magmas receives support from incompatible trace elements in olivine gabbro and leucogabbro, which display enrichment in large ion lithophile elements and prominent depletion in Nb and Ta with higher U/Th and lower Ce/Pb and Nb/Ta ratios than MORBs and OIBs. The hydrous nature of the arc magmas are corroborated by the Silurian gabbroic rocks with a cumulate texture comprising hornblende cumulates and extremely calcic plagioclase (An up to 99 mol%). Troctolite is a hybrid rock, and its formation is related to the reaction of the hydrous basaltic magmas with a former arc olivine-diallage matrix which suggests multiple arc basaltic magmatism in the Early Paleozoic. The Early Permian mafic–ultramafic intrusions in this belt comprise ultramafic rocks and evolved hornblende gabbro resulting from differentiation of a basaltic magma underplated in an intraplate extensional tectonic setting, and this model would apply to coeval mafic–ultramafic intrusions in the CTOB. Presence of Silurian gabbroic rocks as well as pervasively distributed arc felsic plutons in the CTOB suggest active crust-mantle magmatism in the Silurian, which has contributed to crustal growth by (1) serving as heat sources that remelted former arc crust to generate arc plutons, (2) addition of a mantle component to the arc plutons by magma mixing, and (3) transport of mantle materials to form new lower or middle crust. Mafic–ultramafic intrusions and their spatiotemporal A-type granites during Early Permian to Triassic intraplate extension are intrusive counterparts of the contemporaneous bimodal volcanic rocks in the CTOB. Basaltic underplating in this temporal interval contributed to crustal growth in a vertical form, including adding mantle materials to lower or middle crust by intracrustal differentiation and remelting Early-Paleozoic formed arc crust in the CTOB.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号