首页 | 官方网站   微博 | 高级检索  
     


Modelling of Microstructural Evolution and Prediction of Mechanical Properties of Plain Carbon Strip Steel in Hot Rolling Process
Authors:Xiaochun SHA  Chunli MO  Dianzhong LI  Yiyi LI
Affiliation:Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China ...
Abstract:Based on hot rolling production line of strip steel, the of-line in-house software, termed as ROLLAN (Rolling Analysis),is developed. The code is mainly used to predict the evolution of temperature, rolling force, fraction and grain size of recrystallization, fraction and grain size of phase transformation and final mechanical properties. Almost all the processing parameters affecting microstructure and mechanical properties in the schedule from reheating to the coiling process are considered in detail. Self-learning coefficient is adopted to adjust the deviation between predicted and measured temperatures, such as roughing exit temperature (RT2), finishing exit temperature (FT7) and coiling temperature (CT). Due to the application of low-speed-threading, increasing-speed-rolling and decreasing-speeddelivery process during finishing rolling and different cooling condition, after coiling the thermal-mechanical history of different position, along strip longitudinal direction is different resulting in inhomogeneous mechanical properties.So the segments are divided along longitudinal direction to identify the variation of microstructure and mechanical properties. An example of plain carbon strip steel Q235 with various thickness is used to compare the calculated mechanical properties with measured ones. For the specific grade of Q235, the maximum deviation of tensile strength is less than 10.3 MPa, the yield strength is less than 13.2 MPa, and elongation is less than 1.99%. Further work will focus on the on-line application and consider the effect of macrosegregation and sulfur content of cast slab.
Keywords:Microstructural evolution  Hot rolling  Mechanical properties  Modeling
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《材料科学技术学报》浏览原始摘要信息
点击此处可从《材料科学技术学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号