首页 | 官方网站   微博 | 高级检索  
     


Simulation of polydisperse multiphase systems using population balances and example application to bubbly flows
Authors:Antonio Buffo  Daniele L Marchisio  Marco Vanni  Peter Renze
Affiliation:1. Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy;2. Department for Chemical and Process Engineering, BASF SE, Ludwigshafen, Germany
Abstract:In this work the relationship between multiphase computational fluid dynamics models and population balance models is illustrated by deriving the main governing equations from the generalized population balance equation. The resulting set of equations, consisting of the well known two-fluid model coupled with a bivariate population balance model, is then implemented in the CFD code OpenFOAM. The implementation is used to simulate a particular multiphase problem: bubbly flow in a rectangular column. Results show that, although the different mesoscale models for drag force, coalescence, breakup and mass transfer, can be improved, the agreement with experiments is nevertheless good. Moreover, although the problem investigated is quite complex, as the evolution of bubbles is solved in real-space, time and phase-space (i.e. bubble size and composition) the resulting computational costs are reasonable. This is due to the fact that the bivariate population balance model is solved here with the so-called conditional quadrature method of moments, that very efficiently deals with these problems. The overall approach is demonstrated to be efficient and robust and is therefore suitable for the simulation of many polydisperse multiphase flows.
Keywords:CQMOM  Bubble column  Multiphase flow  Population balance  Coalescence  Breakup  Mass transfer  OpenFOAM
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号