首页 | 官方网站   微博 | 高级检索  
     


Pathological Relationship between Intracellular Superoxide Metabolism and p53 Signaling in Mice
Authors:Kenji Watanabe  Shuichi Shibuya  Yusuke Ozawa  Toshihiko Toda  Takahiko Shimizu
Affiliation:1.Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, Obu 474-8511, Aichi, Japan; (K.W.); (S.S.);2.Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba 260-8677, Chiba, Japan; (Y.O.); (T.T.)
Abstract:Intracellular superoxide dismutases (SODs) maintain tissue homeostasis via superoxide metabolism. We previously reported that intracellular reactive oxygen species (ROS), including superoxide accumulation caused by cytoplasmic SOD (SOD1) or mitochondrial SOD (SOD2) insufficiency, induced p53 activation in cells. SOD1 loss also induced several age-related pathological changes associated with increased oxidative molecules in mice. To evaluate the contribution of p53 activation for SOD1 knockout (KO) (Sod1/) mice, we generated SOD1 and p53 KO (double-knockout (DKO)) mice. DKO fibroblasts showed increased cell viability with decreased apoptosis compared with Sod1/ fibroblasts. In vivo experiments revealed that p53 insufficiency was not a great contributor to aging-like tissue changes but accelerated tumorigenesis in Sod1/ mice. Furthermore, p53 loss failed to improve dilated cardiomyopathy or the survival in heart-specific SOD2 conditional KO mice. These data indicated that p53 regulated ROS-mediated apoptotic cell death and tumorigenesis but not ROS-mediated tissue degeneration in SOD-deficient models.
Keywords:superoxide dismutase (SOD)  p53  superoxide  aging  apoptosis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号