首页 | 官方网站   微博 | 高级检索  
     


Measurement of the surrounding liquid motion of a single rising bubble using a Dual-Camera PIV system
Authors:K Sakakibara  M Yamada  Y Miyamoto  T Saito  
Affiliation:

aDepartment of Mechanical Engineering, Shizuoka University, Hamamatsu, Shizuoka, Japan

Abstract:A new type of Particle Image Velocimetry technique, called “Dual-Camera PIV System”, was developed in order to achieve higher-accuracy measurement at a high time resolution. It is very difficult to measure precisely a complex flow field such as a gas–liquid two phase flow using PIV, because of the existence of a strong turbulence. In the conventional dynamic PIV, a time interval of two images required for analysis depends basically on a camera frame rate. A time interval of a set of PIV images affects the measurement accuracy significantly. Therefore, it is necessary to shorten the time interval of a set of PIV images as well as to achieve high frame rates. For this specific purpose, we developed a measurement system composed of two high speed cameras. The interval of two images obtained from each camera was controlled arbitrarily. Furthermore, a recursive cross-correlation method was adopted as PIV algorithm in order to achieve high spatial resolution. The interrogation areas were determined from the number density of PIV particles. The developed system was evaluated by cross-correlation coefficient and signal–noise (S/N) ratio. As the demonstration, the surrounding liquid motion in the vicinity of a single rising bubble was measured via this measurement system.
Keywords:PIV  Dual-Camera  Recursive cross-correlation  Single bubble
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号