摘 要: | 针对基于表面肌电信号(sEMG)的手势识别中,由于传统降噪算法对sEMG信号高频部分分解不当或存在频率混叠现象使得对含噪sEMG信号降噪效果不佳而导致手势识别精度大大降低的问题,提出使用基于互补集合经验模态分解(CEEMD)与变分模态分解(VMD)组合的滑动区间软阈值(SIST)降噪算法(CEEMD-VMD-SIST)对含噪sEMG信号进行降噪处理;使用CEEMD将含噪信号分解为从高频到低频的多个不同本征模态函数(IMF),根据自相关系数客观界定后续降噪模态分量范围,对选中的模态分量采用VMD的SIST方法进行分解降噪并与部分剩余模态分量进行重构;从实验结果中可以看出,在不同信噪比下,所提算法的降噪性能与传统降噪方法相比,信噪比与均方根误差均有明显改善,可以更大程度上保留信号的有用信息,即所提算法的降噪性能更佳.
|