首页 | 官方网站   微博 | 高级检索  
     

水力负荷及固相碳源对BAF+多级土壤渗滤组合工艺处理污水的影响研究
引用本文:严森,吴为中,杨春平,谌建宇,曾光明,陈佳利,于茜.水力负荷及固相碳源对BAF+多级土壤渗滤组合工艺处理污水的影响研究[J].环境科学学报,2012,32(8):1793-1800.
作者姓名:严森  吴为中  杨春平  谌建宇  曾光明  陈佳利  于茜
作者单位:1. 湖南大学环境科学与工程学院,长沙410082 环境生物与控制教育部重点实验室湖南大学,长沙410082 北京大学环境科学与工程学院,北京100871
2. 北京大学环境科学与工程学院,北京,100871
3. 湖南大学环境科学与工程学院,长沙410082 环境生物与控制教育部重点实验室湖南大学,长沙410082
4. 环境保护部华南环境科学研究所,广州,510655
基金项目:国家重大水专项项目(No.2008ZX07211-004, 2008ZX07102-003);国际合作项目(No.2009DFA91780)
摘    要:碳源的选择及曝气量的控制是影响多级土壤渗滤系统(multi-soil-laying,即MSL)脱氮效果的重要因素.试验采用BAF+MSL两段式新型组合工艺,避免了传统MSL曝气过量抑制反硝化脱氮的风险.考察了不同水力负荷下,BAF+MSL对生活污水的净化效果,并比较研究了以聚丁二酸丁二醇酯(PBS)为反硝化碳源的MSL-1及木屑为碳源的MSL-2的脱氮除磷效果.结果表明,不同水力负荷下,系统对SS平均去除率为94.08%,对COD的去除率均在80%以上,出水COD在20mg·L-1以下.水力负荷对系统BAF段硝化性能影响较小,对MSL反硝化脱氮影响较大.BAF水力负荷为0.5、1及2m·3m-·2d-1时,BAF对NH4+-N的去除率均在90%以上,对TN的平均去除率依次为26.53%、11.09%、5.71%;对应MSL段水力负荷分别为0.25、0.50及1m·3m-·2d-1时,MSL-1对TN平均去除率分别为87.39%、65.09%、45.56%,MSL-2平均去除率依次为61.51%、42.52%、31.32%.MSL-1脱氮性能明显优于MSL-2,而两者除磷效果区别较小.随着水力负荷增大,MSL对TP去除率依次降低,MSL-1对TP平均去除率最高为91.97%.

关 键 词:多级土壤渗滤  固相碳源  水力负荷  生活污水  生物脱氮
收稿时间:2011/10/14 0:00:00
修稿时间:2011/11/29 0:00:00

Effect of hydraulic loading and solid carbon source on domestic wastewater treatment efficiency with BAF and multi-soil-layering combined process
YAN Sen,WU Weizhong,YANG Chunping,CHEN Jianyu,ZENG Guangming,CHEN Jiali and YU Qian.Effect of hydraulic loading and solid carbon source on domestic wastewater treatment efficiency with BAF and multi-soil-layering combined process[J].Acta Scientiae Circumstantiae,2012,32(8):1793-1800.
Authors:YAN Sen  WU Weizhong  YANG Chunping  CHEN Jianyu  ZENG Guangming  CHEN Jiali and YU Qian
Affiliation:1. College of Environmental Science and Engineering, Hunan University, Changsha 410082;2. Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082;3. College of Environmental Science and Engineering, Peking University, Beijing 100871;College of Environmental Science and Engineering, Peking University, Beijing 100871;1. College of Environmental Science and Engineering, Hunan University, Changsha 410082;2. Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082;South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655;1. College of Environmental Science and Engineering, Hunan University, Changsha 410082;2. Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082;1. College of Environmental Science and Engineering, Hunan University, Changsha 410082;2. Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082;1. College of Environmental Science and Engineering, Hunan University, Changsha 410082;2. Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082
Abstract:Carbon source and aeration rate are the important factors affecting the removal efficiency of Multi-soil-layering (MSL) system. A new two-stage combined process of BAF+MSL was designed for purifying domestic wastewater under different hydraulic loading rate (HLR). Poly (butylene succinate) (PBS) and sawdust were used as carbon source in MSL-1 and MSL-2, respectively. Comparative studies on performance of nitrogen and phosphorus removal between MSL-1 and MSL-2 were also investigated. The result showed that the average removal efficiency of SS and COD were 94.08% and 80%, respectively, and the COD concentration in the effluent was below 20 mg·L-1. The influence of HLR on denitrification of MSL was more significant than that on nitrification of BAF. When the HLR of BAF were 0.5, 1 and 2 m3·m-2·d-1 respectively, the removal efficiency of NH4+-N was above 90%, and the TN removal efficiency were 26.53%, 11.09% and 5.71%, respectively. The corresponding HLR of MSL were 0.25, 0.5 and 1 m3·m-2·d-1, the TN removal efficiency of MSL-1 were 87.39%, 65.09% and 45.56%, respectively. In comparison, the removal efficiency of MSL-2 were 61.51%, 42.52% and 31.32%, respectively. Although the TN removal efficiency of MSL-1 was better than that of MSL-2, the TP removal efficiency of MSL-1 was similar to MSL-2. As the HLR increased, the TP removal efficiency reduced. The highest average TP removal efficiency of MSL-1 was 91.97%.
Keywords:multi-soil-layering (MSL)  solid carbon source  hydraulic loading rate  domestic wastewater  biological denitrification
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《环境科学学报》浏览原始摘要信息
点击此处可从《环境科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号