首页 | 官方网站   微博 | 高级检索  
     


Comparative assessment of coal fired IGCC systems with CO2 capture using physical absorption,membrane reactors and chemical looping
Authors:Sina Rezvani  Ye Huang  David McIlveen-Wright  Neil Hewitt  Jayanta Deb Mondol
Affiliation:School of the Built Environment, Centre for Sustainable Technologies, University of Ulster, Co Antrim BT37 0QB, N. Ireland, UK
Abstract:The integrated gasification combined cycle (IGCC) as an efficient power generation technology with lowest specific carbon dioxide emissions among coal power plants is a very good candidate for CO2 capture resulting in low energy penalties and minimised CO2 avoidance costs. In this paper, the techno-economic characteristics of four different capture technologies, which are built upon a conventional reference case, are studied using the chemical process simulation package “ECLIPSE”. The technology options considered are: physical absorption, water gas shift reactor membranes and two chemical looping combustion cycles (CLC), which employ single and double stage reactors. The latter system was devised to achieve a more balanced distribution of temperatures across the reactors and to counteract hot spots which lead to the agglomeration and the sintering of oxygen carriers. Despite the lowest efficiency loss among the studied systems, the economic performance of the double stage CLC was outperformed by systems employing physical absorption and water gas shift reactor membranes. Slightly higher efficiencies and lower costs were associated with systems with integrated air separation units. The estimation of the overall capital costs was carried out using a bottom-up approach. Finally, the CO2 avoidance costs of individual technologies were calculated based on the techno-economic data.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号