首页 | 官方网站   微博 | 高级检索  
     


Ca2+ transient, cell volume, and microviscosity of the plasma membrane in smooth muscle
Authors:M Ochsner
Affiliation:Faculty of Medicine, Biomedical Physics, University of Basel, Switzerland.
Abstract:Despite pronounced differences by which membrane-depolarizing or phospholipase C-activating stimuli initiate contractile responses, a rise in Ca2+]i is considered the primary mechanism for induction of smooth muscle contractions. Subsequent to the formation of the well-characterized Ca(2+)4-calmodulin complex, interaction with the catalytic subunit of myosin light chain kinase triggers phosphorylation of 20 kDa myosin light chain and activates actin-dependent Mg2+-ATPase activity, which ultimately leads to the development of tension. The present article reviews the fundamental mechanisms leading to an increase in Ca2+]i and discusses the biochemical processes involved in the transient and sustained phases of contraction. Moreover, the commentary summarizes current knowledge on the modulatory effect of changes in the microviscosity of the plasma membrane on the Ca2+ transient as well as the contractile response of smooth muscle. Evidence has accumulated that these changes in microviscosity alter the activity of membrane-bound enzymes and affect the generation of endogenous mediators responsible for the regulation of cytosolic Ca2+ concentrations and for the Ca2+]i-sensitivity of myosin light chain phosphorylation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号