首页 | 官方网站   微博 | 高级检索  
     


Modeling and simulation of an integrated multi-shell fixed bed membrane reactor with well-mixed catalyst pattern for production of styrene and cyclohexane
Authors:MEE Abashar
Affiliation:Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
Abstract:A rigorous two-dimensional steady state mathematical model based on the dusty gas model is implemented to investigate the performance of a bench-scale integrated multi-shell fixed bed membrane reactor with well-mixed catalyst pattern for simultaneous production of styrene and cyclohexane. Since the styrene producing reaction is equilibrium limited, significant displacement of the thermodynamic equilibrium is achieved by three simultaneous actions of an auxiliary hydrogenation reaction of benzene using a well-mixed catalyst pattern, the membrane and the multi-shell reactor configuration. The simulation results show that the complete conversion of ethylbenzene is possible at relatively low temperature and shorter reactor length. Effective operating regions with optimal conditions are observed and explanations offered. An effective length criterion for the optimal conditions is presented. The effective operating regions are found to be sensitive to changes of catalyst bed composition, feed temperature, feed pressure and shells ratio. It is also found that the multi-shell configuration is superior to the single shell configuration. Although this investigation is restricted to two catalysts and two shells, some of the rich characteristics of this system have been uncovered.
Keywords:Catalyst pattern  Dusty gas model  Mathematical modeling  Membrane reactor  Styrene
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号