首页 | 官方网站   微博 | 高级检索  
     


Correlating mode-I fracture toughness and mechanical properties of heat-treated crystalline rocks
Authors:Mayukh Talukdar  Debanjan Guha Roy  TN Singh
Affiliation:1. Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India;2. IITB-Monash Research Academy, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
Abstract:For the effect of thermal treatment on the mode-I fracture toughness (FT), three crystalline rocks (two basalts and one tonalite) were experimentally investigated. Semi-circular bend specimens of the rocks were prepared following the method suggested by the International Society for Rock Mechanics (ISRM) and were treated at various temperatures ranging from room temperature (25 °C) to 600 °C. Mode-I FT was correlated with tensile strength (TS), ultrasonic velocities, and Young's modulus (YM). Additionally, petrographic and X-ray diffraction analyses were carried out to find the chemical changes resulting from the heat treatment. Further, scanning electron microscopy (SEM) was conducted to observe the micro structural changes when subjected to high temperatures. These experiments demonstrate that heat treatment has a strong negative impact on the FT and mechanical properties of the rocks. From room temperature to 600 °C, mode-I FT values of massive basalt, giant plagioclase basalt, and tonalite were reduced by nearly 52%, 68%, and 64%, respectively. Also, at all temperature levels, FT and mechanical properties are found to be exponentially correlated. However, the exact nature of the relationship mainly depends on rock type. Besides, TS was found to be a better indicator of degradation degree than the mode-I FT. SEM images show that micro crack density and structural disintegration of the mineral grains increase with temperature. These physical changes confirm the observed reduction in the stiffness of heat-treated crystalline rocks.
Keywords:Fracture toughness (FT)  Tensile strength (TS)  Ultrasonic velocity  Young's modulus (YM)  Crystalline rocks
本文献已被 CNKI ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号