首页 | 官方网站   微博 | 高级检索  
     


Efficient fair queueing algorithms for packet-switched networks
Authors:Stiliadis  D Varma  A
Affiliation:Lucent Technol., Bell Labs., Holmdel, NJ;
Abstract:Although weighted fair queueing (WFQ) has been regarded as an ideal scheduling algorithm in terms of its combined delay bound and proportional fairness properties, its asymptotic time complexity increases linearly with the number of sessions serviced by the scheduler, thus limiting its use in high-speed networks. An algorithm that combines the delay and fairness bounds of WFQ with O(1) timestamp computations had remained elusive so far. In this paper we present two novel scheduling algorithms that have O(1) complexity for timestamp computations and provide the same bounds on end-to-end delay and buffer requirements as those of WFQ. The first algorithm, frame-based fair queueing (FFQ), uses a framing mechanism to periodically recalibrate a global variable tracking the progress of work in the system, limiting any short-term unfairness to within a frame period. The second algorithm, starting potential based fair queueing (SPFQ), performs the recalibration at packet boundaries, resulting in improved fairness while still maintaining the O(1) timestamp computations. Both algorithms are based on the general framework of rate-proportional servers (RPSs) introduced by Stiliadis and Varma (see ibid., vol.6, no.2, p.164-74, 1998). The algorithms may be used in both general packet networks with variable packet sizes and in asynchronous transfer mode (ATM) networks
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号