首页 | 官方网站   微博 | 高级检索  
     


Numerical and experimental corroboration of an FDTD thin-slot modelfor slots near corners of shielding enclosures
Authors:Min Li Kuang-Ping Ma Hockanson  DM Drewniak  JL Hubing  TH Van Doren  TP
Affiliation:Dept. of Electr. Eng., Missouri Univ., Rolla, MO ;
Abstract:Simple design maxims to restrict slot dimensions in enclosure designs below a half-wave length are not always adequate for minimizing electromagnetic interference (EMI). Complex interactions between cavity modes, sources, and slots can result in appreciable radiation through nonresonant length slots. The finite-difference time domain (FDTD) method can be employed to pursue these issues with adequate modeling of thin slots. Subcellular FDTD algorithms for modeling thin slots in conductors have previously been developed. One algorithm based on a quasistatic approximation has been shown to agree well with experimental results for thin slots in planes. This FDTD thin-slot algorithm is compared herein with two-dimensional (2-D) moment method results for thin slots near corners and plane wave excitation. FDTD simulations are also compared with measurements for slots near an edge of a cavity with an internal source
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号