首页 | 官方网站   微博 | 高级检索  
     


Two minimum spanning forest algorithms on fixed-size hypercube computers
Authors:Sajal K Das  Narsingh Deo  Sushil Prasad
Affiliation:

* Department of Computer Science, University of North Texas, Denton, TX 76203-3886, USA

? Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA

Abstract:Two parallel algorithms for finding minimum spanning forest (MSF) of a weighted undirected graph on hypercube computers, consisting of a fixed number of processors, are presented. One algorithm is suited for sparse graphs, the other for dense graphs. Our design strategy is based on successive elimination of non-MSF edges. The input graph is partitioned equally among different processors, which then repeatedly eliminate non-MSF edges and merge results to gradually construct the desired MSF of the entire graph. Low communication overhead is achieved by restricting the message-flow to between the neighboring processors in the hypercube topology. The correctness of our approach is due to a theorem which states that with total-ordered edges, if an edge of an arbitrary subgraph does not belong to its MSF, then it does not belong to the MSF of the entire graph. For a graph of n vertices and m edges, our first algorithm finds an MSF in O(m log m)/p) time using p processors for p ≤ (mlog m)/n(1+log(m/n)). The second algorithm, efficient for dense graphs, requires O(n2/p) time for pn/log n.
Keywords:Graph problems  Hypercube computers  Minimum spanning forest  Parallel algorithms
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号