首页 | 官方网站   微博 | 高级检索  
     


Electrochemical Properties of Chemically Treated Polyvinylchloride‐Based Heterogeneous Cation‐Exchange Membrane
Authors:K Khoiruddin  D Ariono  S Subagjo  IG Wenten
Abstract:Chemical treatment is a facile method for improving electrochemical properties of a heterogeneous ion‐exchange membrane. In this work, polyvinylchloride (PVC)‐based heterogeneous cation‐exchange membrane is prepared by a dry–wet phase inversion process. The membrane is treated with a sulfuric acid solution in a room and a high temperature (80 °C). Effects of the treatment procedure and hydrophilic additive on membrane electrochemical properties are investigated. Chemically treated PVC and PVC/additive heterogeneous cation‐exchange membranes show a change in membrane electrochemical properties in terms of water uptake (Wu), conductivity, ion‐exchange capacity (IEC), and permselectivity (Ps). In general, Wu and conductivity increase after the chemical treatment. Significant improvement is observed when a high temperature is used. Meanwhile, the conductivity is more pronounced for PVC/additive membranes. The improvement may be associated with an increase in hydrophilicity. A significant increase in IEC is also observed for modified PVC/additive membrane. This may be associated with the removal or leaching of the additive during the treatment which in turn increases the portion of ion‐exchange resins in the membrane. Most of the modified membranes show a decrease in Ps. It may be due to a decrease in the effectiveness of Donnan effect indicated by Donnan equilibrium constant (K+). POLYM. ENG. SCI., 59:E219–E226, 2019. © 2018 Society of Plastics Engineers
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号