首页 | 官方网站   微博 | 高级检索  
     


An approach for robust PDE-constrained optimization with application to shape optimization of electrical engines and of dynamic elastic structures under uncertainty
Authors:Philip Kolvenbach  Oliver Lass  Stefan Ulbrich
Affiliation:1.Fachbereich Mathematik,Technische Universit?t Darmstadt,Darmstadt,Germany
Abstract:We present a robust optimization framework that is applicable to general nonlinear programs (NLP) with uncertain parameters. We focus on design problems with partial differential equations (PDE), which involve high computational cost. Our framework addresses the uncertainty with a deterministic worst-case approach. Since the resulting min–max problem is computationally intractable, we propose an approximate robust formulation that employs quadratic models of the involved functions that can be handled efficiently with standard NLP solvers. We outline numerical methods to build the quadratic models, compute their derivatives, and deal with high-dimensional uncertainties. We apply the presented approach to the parametrized shape optimization of systems that are governed by different kinds of PDE and present numerical results.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号