首页 | 官方网站   微博 | 高级检索  
     


Hierarchical Porous Ni3S4 with Enriched High‐Valence Ni Sites as a Robust Electrocatalyst for Efficient Oxygen Evolution Reaction
Authors:Kai Wan  Jiangshui Luo  Chen Zhou  Ting Zhang  Jordi Arbiol  Xihong Lu  Bing‐Wei Mao  Xuan Zhang  Jan Fransaer
Abstract:Electrochemical water splitting is a common way to produce hydrogen gas, but the sluggish kinetics of the oxygen evolution reaction (OER) significantly limits the overall energy conversion efficiency of water splitting. In this work, a highly active and stable, meso–macro hierarchical porous Ni3S4 architecture, enriched in Ni3+ is designed as an advanced electrocatalyst for OER. The obtained Ni3S4 architectures exhibit a relatively low overpotential of 257 mV at 10 mA cm?2 and 300 mV at 50 mA cm?2. Additionally, this Ni3S4 catalyst has excellent long‐term stability (no degradation after 300 h at 50 mA cm?2). The outstanding OER performance is due to the high concentration of Ni3+ and the meso–macro hierarchical porous structure. The presence of Ni3+ enhances the chemisorption of OH?, which facilitates electron transfer to the surface during OER. The hierarchical porosity increases the number of exposed active sites, and facilitates mass transport. A water‐splitting electrolyzer using the prepared Ni3S4 as the anode catalyst and Pt/C as the cathode catalyst achieves a low cell voltage of 1.51 V at 10 mA cm?2. Therefore, this work provides a new strategy for the rational design of highly active OER electrocatalysts with high valence Ni3+ and hierarchical porous architectures.
Keywords:durability  hierarchical porous structure  high‐valence Ni3+  Ni3S4  oxygen evolution reaction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号