首页 | 官方网站   微博 | 高级检索  
     


Multidimension‐Controllable Synthesis of Ant Nest‐Structural Electrode Materials with Unique 3D Hierarchical Porous Features toward Electrochemical Applications
Authors:Fujun Miao  Na Lu  Peng Zhang  Zhenyi Zhang  Guosheng Shao
Abstract:Hierarchical porous materials (HPM) have been widely used to enhance electrochemical performance in different fields of application, since their porous structures benefit electrolyte infiltration and ion diffusion. However, the realization of multidimension‐controllable synthesis of HPM, including material category, material components, supporting substrates, as well as pore sizes/distributions, is still a huge challenge. Herein, a novel concept is proposed, for the first time, on the geometry structure of HPM bioinspired by natural ant nests, which features 3D interlaced and well‐interconnected porous structures. Moreover, a facile and universal approach is developed to the multidimension‐controllable synthesis of ant nest‐structural HPM. Further investigation shows that the in situ construction of carbon‐based ant nests onto porous current collectors to fabricate the integrated electrode for supercapacitors could induce nearly 70% and 45% enhancement on the specific capacitance compared to the common powder and freestanding materials, respectively. Moreover, this synthesis route can be facilely extended to obtain the ant nest‐structural CuOx, which exhibits fivefold enhancement in sensitivity for glucose detection. Such biomimetic hierarchical porous architectures are of great significance in the field of electrochemical applications.
Keywords:bicontinuous channel  bionic design  electrochemical capacitors  glucose detection  integrated architecture
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号