首页 | 官方网站   微博 | 高级检索  
     


Quaternary structure sensitive tyrosine residues in human hemoglobin: UV resonance raman studies of mutants at alpha140, beta35, and beta145 tyrosine
Authors:M Nagai  H Wajcman  A Lahary  T Nakatsukasa  S Nagatomo  T Kitagawa
Affiliation:School of Health Sciences, Kanazawa University Faculty of Medicine, Kanazawa 920-0942, Japan. nagai@kenroku.ipc.kanazawa-u.ac.jp
Abstract:Recent studies noted the contribution of alpha42Tyr to the T-R-dependent UV resonance Raman (UVRR) spectral changes of HbA Nagai, M., et al. (1996) J. Mol. Struct. 379, 65-75; Huang, S., et al. (1997) Biochemistry 36, 6197-6206], but the observed UVRR changes of the Tyr residue cannot be fully interpreted with alpha42Tyr alone. To identify the remaining contributions, the 235 nm-excited UVRR spectra of Tyr mutant Hbs at alpha140, beta35, and beta145 were investigated here. The Fe-His stretching mode demonstrated that all of these mutant Hbs take the T structure in the deoxy form under these experimental conditions. The UVRR change of the Trp residue of these mutants upon the T-R transition was the same as that in HbA, indicating that the T-R-dependent UVRR change of beta37Trp is not due to stacking with Tyr residues but is due to the formation or destruction of a hydrogen bond. The recombinant Hbs beta35Tyr --> Phe and beta35Tyr --> Thr both exhibited UVRR spectra identical with that of HbA, meaning that beta35Tyr is not responsible. In the spectra of des(beta146His,beta145Tyr)Hb with inositol hexaphosphate, the frequency shift of the Tyr RR bands was the same as that in HbA but the intensity enhancement in the CO form was small, suggesting that beta145Tyr contributes to a part of the intensity change, but scarcely relates to the frequency shift. In the spectra of Hb Rouen (alpha140Tyr --> His), the frequency shifts of bands at 1617 (Y8a) and 1177 (Y9a) cm-1 following ligation were half of those in HbA, while the intensity enhancement was not detected. This result means that alpha140Tyr is responsible for both the frequency shift and the intensity changes. It is suggested that the frequency shift of the Tyr RR bands upon the T --> R transition is due to changes in the hydrogen bonding state of alpha42- and alpha140Tyr and that the intensity enhancement is due to changes in the environment of the penultimate Tyr in both alpha and beta subunits (alpha140 and beta145). These alterations in the vibrational spectra clearly demonstrate which tyrosine residues are involved in the T-R transition as a result of modification of their local environments.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号