首页 | 官方网站   微博 | 高级检索  
     


Positive Bias Temperature Instability (PBTI) Characteristics of Contact-Etch-Stop-Layer-Induced Local-Tensile-Strained $hbox{HfO}_{2}$ nMOSFET
Abstract: The positive bias temperature instability (PBTI) characteristics of contact-etch-stop-layer (CESL)-strained $hbox{HfO}_{2}$ nMOSFET are thoroughly investigated. For the first time, the effects of CESL on an $hbox{HfO}_{2}$ dielectric are investigated for PBTI characteristics. A roughly 50% reduction of $V_{rm TH}$ shift can be achieved for the 300-nm CESL $hbox{HfO}_{2}$ nMOSFET after 1000-s PBTI stressing without obvious $ hbox{HfO}_{2}/hbox{Si}$ interface degradation, as demonstrated by the negligible charge pumping current increase ($≪$ 4%). In addition, the $hbox{HfO}_{2}$ film of CESL devices has a deeper trapping level (0.83 eV), indicating that most of the shallow traps (0.75 eV) in as-deposited $ hbox{HfO}_{2}$ film can be eliminated for CESL devices.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号