首页 | 官方网站   微博 | 高级检索  
     


Efficient randomised broadcasting in random regular networks with applications in peer-to-peer systems
Authors:Petra Berenbrink  Robert Elsässer  Tom Friedetzky
Affiliation:1.School of Computing Science,Simon Fraser University,Burnaby,Canada;2.Department of Computing Science,University of Salzburg,Salzburg,Austria;3.School of Engineering and Computing Science,Durham University,Durham,UK
Abstract:We consider broadcasting in random d-regular graphs by using a simple modification of the random phone call model introduced by Karp et al. (Proceedings of the FOCS ’00, 2000). In the phone call model, in every time step, each node calls a randomly chosen neighbour to establish a communication channel to this node. The communication channels can then be used bi-directionally to transmit messages. We show that, if we allow every node to choose four distinct neighbours instead of one, then the average number of message transmissions per node required to broadcast a message efficiently decreases exponentially. Formally, we present an algorithm that has time complexity \(O(\log n)\) and uses \(O(n\log \log n)\) transmissions per message. In contrast, we show for the standard model that every distributed algorithm in a restricted address-oblivious model that broadcasts a message in time \(O(\log n)\) requires \(\Omega (n \log n{/} \log d)\) message transmissions. Our algorithm efficiently handles limited communication failures, only requires rough estimates of the number of nodes, and is robust against limited changes in the size of the network. Our results have applications in peer-to-peer networks and replicated databases.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号