首页 | 官方网站   微博 | 高级检索  
     


Lead-free LiNbO3 nanowire-based nanocomposite for piezoelectric power generation
Authors:Byung Kil Yun  Yong Keun Park  Minbaek Lee  Nuri Lee  William Jo  Seongsu Lee  Jong Hoon Jung
Affiliation:1.Department of Physics, Inha University, Incheon 402-751, Republic of South Korea;2.Department of Physics, Ewha Womans University, Seoul 120-750, Republic of South Korea;3.Neutron Science Division HANARO, Korea Atomic Energy Research Institute, Daejeon 305-353, Republic of South Korea
Abstract:In a flexible nanocomposite-based nanogenerator, in which piezoelectric nanostructures are mixed with polymers, important parameters to increase the output power include using long nanowires with high piezoelectricity and decreasing the dielectric constant of the nanocomposite. Here, we report on piezoelectric power generation from a lead-free LiNbO3 nanowire-based nanocomposite. Through ion exchange of ultra-long Na2Nb2O6-H2O nanowires, we synthesized long (approximately 50 μm in length) single-crystalline LiNbO3 nanowires having a high piezoelectric coefficient (d33 approximately 25 pmV-1). By blending LiNbO3 nanowires with poly(dimethylsiloxane) (PDMS) polymer (volume ratio 1:100), we fabricated a flexible nanocomposite nanogenerator having a low dielectric constant (approximately 2.7). The nanogenerator generated stable electric power, even under excessive strain conditions (approximately 105 cycles). The different piezoelectric coefficients of d33 and d31 for LiNbO3 may have resulted in generated voltage and current for the e33 geometry that were 20 and 100 times larger than those for the e31 geometry, respectively. This study suggests the importance of the blending ratio and strain geometry for higher output-power generation in a piezoelectric nanocomposite-based nanogenerator.

PACS

77.65.-j; 77.84.-s; 73.21.Hb
Keywords:High and stable electric power  Lead-free LiNbO3 nanowire  Nanocomposite nanogenerator
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号