首页 | 官方网站   微博 | 高级检索  
     


Multi-component pharmacokinetics assessment of Artemisia annua L. in rats based on LC-ESI-MS/MS quantification combined with molecular docking
Affiliation:Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
Abstract:Artemisia annua L. (A. annua) has been used as herbal medicine in China for thousands of years for clearing deficiency heat, treating malaria and removing jaundice. A rapid, sensitive and specific liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC–ESI–MS/MS) method was developed, validated, and successfully used for simultaneous quantification of the active components in rat plasma after oral administration of A. annua extract. Molecular docking of each component with drug metabolizing enzymes was carried out to explore the effect of each component on CYP-mediated drug metabolism. Two coumarins (scopolin (SPL) and scopoletin (SPLT)), three flavonoids (rutin (RUT), chrysosplenol D (CHD), casticin (CAS)) and three sesquiterpenes (arteannuin B (ARN), dihydroartemisinic acid (DARM) and artemisinic acid (ARM)) were detected in rat plasma after oral administration. CHD and CAS were rapidly absorbed into rat blood with the Tmax values of 0.11 ± 0.04 h and 0.13 ± 0.05 h, respectively. Their half-lives (t1/2 2.68 ± 3.62 h and 0.33 ± 0.07 h) were shorter. SPLT were also rapidly absorbed into the blood (Tmax 0.15 ± 0.03 h), but exhibited a longer half-life (t1/2 6.53 ± 1.84 h), indicating that it could be effective in vivo for a longer period of time. The peak time of SPL, RUT, DARM and ARM ranged from 1 ~ 4 h, demonstrating that they could maintain considerable concentrations for a longer time. ARN showed strong enterohepatic circulation in rats, leading to slower onset time and longer effect. A few components including SPLT, CHD, CAS and ARN could be metabolized into their corresponding II phase metabolites combining with glucuronic acid or sulfuric acid. RUT could decompose its glycosyl to generate genin. The molecular docking results indicated that those flavonoids and coumarins of A. annua interacting with CYPs mainly through hydrogen bonding and π-π stacking had better CYP450 enzyme binding ability than the sesquiterpenoids, which were easier to induce drug interactions. This study presented an integrated strategy for investigating the pharmacokinetic behaviors of eight components in A. annua and laid the foundation for revealing the mechanism of action of A. annua in the organism.
Keywords:LC–ESI–MS/MS  Molecular docking  Pharmacokinetics  Artemisia annua L    HPLC-DAD"}  {"#name":"keyword"  "$":{"id":"k0040"}  "$$":[{"#name":"text"  "_":"High-performance liquid chromatography coupled with diode array detection  LC-ESI-MS/MS"}  {"#name":"keyword"  "$":{"id":"k0050"}  "$$":[{"#name":"text"  "_":"Liquid chromatography coupled with electrospray ionization tandem mass spectrometry  ESI"}  {"#name":"keyword"  "$":{"id":"k0060"}  "$$":[{"#name":"text"  "_":"Electrospray ionization  MRM"}  {"#name":"keyword"  "$":{"id":"k0070"}  "$$":[{"#name":"text"  "_":"Multiple reaction monitoring  QC"}  {"#name":"keyword"  "$":{"id":"k0080"}  "$$":[{"#name":"text"  "_":"Quality control  SPL"}  {"#name":"keyword"  "$":{"id":"k0100"}  "$$":[{"#name":"text"  "_":"Scopolin  SPLT"}  {"#name":"keyword"  "$":{"id":"k0110"}  "$$":[{"#name":"text"  "_":"Scopoletin  RUT"}  {"#name":"keyword"  "$":{"id":"k0120"}  "$$":[{"#name":"text"  "_":"Rutin  CYN"}  {"#name":"keyword"  "$":{"id":"k0130"}  "$$":[{"#name":"text"  "_":"Cynaroside  ISH"}  {"#name":"keyword"  "$":{"id":"k0140"}  "$$":[{"#name":"text"  "_":"Isorhamnetin  CHD"}  {"#name":"keyword"  "$":{"id":"k0150"}  "$$":[{"#name":"text"  "_":"Chrysosplenol D  CAS"}  {"#name":"keyword"  "$":{"id":"k0160"}  "$$":[{"#name":"text"  "_":"Casticin  ARN"}  {"#name":"keyword"  "$":{"id":"k0170"}  "$$":[{"#name":"text"  "_":"Arteannuin B  ART"}  {"#name":"keyword"  "$":{"id":"k0180"}  "$$":[{"#name":"text"  "_":"Artemisinin  DARM"}  {"#name":"keyword"  "$":{"id":"k0190"}  "$$":[{"#name":"text"  "_":"Dihydroartemisinic acid  ARM"}  {"#name":"keyword"  "$":{"id":"k0200"}  "$$":[{"#name":"text"  "_":"Artemisinic acid  CYP450"}  {"#name":"keyword"  "$":{"id":"k0280"}  "$$":[{"#name":"text"  "_":"Cytochrome P450  CE"}  {"#name":"keyword"  "$":{"id":"k0290"}  "$$":[{"#name":"text"  "_":"Collision energy  DP"}  {"#name":"keyword"  "$":{"id":"k0300"}  "$$":[{"#name":"text"  "_":"Declustering potential  EP"}  {"#name":"keyword"  "$":{"id":"k0310"}  "$$":[{"#name":"text"  "_":"Entrance potential  CXP"}  {"#name":"keyword"  "$":{"id":"k0320"}  "$$":[{"#name":"text"  "_":"Cell exit potential  LLOQ"}  {"#name":"keyword"  "$":{"id":"k0350"}  "$$":[{"#name":"text"  "_":"Lower limit of quantification
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号