首页 | 官方网站   微博 | 高级检索  
     


The effect of polyamine biosynthesis inhibition on growth and differentiation of the phytopathogenic fungus Sclerotinia sclerotiorum
Authors:Fernando L Pieckenstain  Andrés Gárriz  Elisabet M Chornomaz  Diego H Sánchez  Oscar A Ruiz
Affiliation:(1) Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), Camino de Circunvalación de la Laguna Km 6, CC 164 (7130) Chascomús, Buenos Aires, Argentina
Abstract:We studied the effects of several polyamine biosynthesis inhibitors on growth, differentiation, free polyamine levels and in vivo and in vitro activity of polyamine biosynthesis enzymes in Sclerotinia sclerotiorum. agr-Difluoromethylornithine (DFMO) and agr-difluoromethylarginine (DFMA) were potent inhibitors of mycelial growth. The effect of DFMO was due to inhibition of ornithine decarboxylase (ODC). No evidence for the existence of an arginine decarboxylase (ADC) pathway was found. The effect of DFMA was partly due to inhibition of ODC, presumably after its conversion into DFMO by mycelial arginase, as suggested by the high activity of this enzyme detected both in intact mycelium and mycelial extracts. In addition, toxic effects of DFMA on cellular processes other than polyamine metabolism might have occurred. Cyclohexylamine (CHA) slightly inhibited mycelial growth and caused an important decrease of free spermidine associated with a drastic increase of free putrescine concentration. Methylglyoxal bis-guanyl hydrazone] (MGBG) had no effect on mycelial growth. Excepting MGBG, all the inhibitors strongly decreased sclerotial formation. Results demonstrate that sclerotial development is much more sensitive to polyamine biosynthesis inhibition than mycelial growth. Our results suggest that mycelial growth can be supported either by spermidine or putrescine, while spermidine (or the putrescine/spermidine ratio) is important for sclerotial formation to occur. Ascospore germination was completely insensitive to the inhibitors.
Keywords:arginase  arginine decarboxylase  ornithine decarboxylase  polyamines  sclerotial development  Sclerotinia sclerotiorum
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号