首页 | 官方网站   微博 | 高级检索  
     


The influence of modified intermetallics and Si particles on fatigue crack paths in a cast A356 Al alloy
Authors:Gall  Yang  Horstemeyer  McDowell  & Fan
Affiliation:Materials &Engineering Sciences Center, Sandia National Laboratories, Livermore, CA 94550, USA,;GWW School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
Abstract:Mechanical fatigue tests were conducted on uniaxial specimens machined from a cast A356-T6 aluminium alloy plate at total strain amplitudes ranging from 0.1 to 0.8% ( R = ? 1). The cast alloy contains strontium-modified silicon particles (vol. fract. ~6%) within an Al–Si eutectic, dispersed α intermetallic particles, Al15 (Fe,Mn)3 Si2 (vol. fract. ~1%), and an extremely low overall volume fraction of porosity (0.01%). During the initial stages of the fatigue process, we observed that a small semicircular fatigue crack propagated almost exclusively through the Al–1% Si dendrite cells. The small crack avoided the modified silicon particles in the Al–Si eutectic and only propagated along the α intermetallics if they were directly in line with the crack plane. These growth characteristics were observed up to a maximum stress intensity factor of ~ K trmax = 7.0 MPa m1/2 (maximum plastic zone size of 96 μm). When the fatigue crack propagated with a maximum crack tip driving force above 7.0 MPa m1/2 the larger fatigue crack tip process zone fractured an increased number of silicon particles and α intermetallics ahead of the crack tip, and the crack subsequently propagated preferentially through the damaged regions. As the crack tip driving force further increased, the area fraction of damaged α intermetallics and silicon particles on the fatigue fracture surfaces also increased. The final stage of failure (fast fracture) was observed to occur almost exclusively through the Al–Si eutectic regions and the α intermetallics.
Keywords:cast Al–Si alloy  fatigue crack propagation  silicon and intermetallic particles
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号