首页 | 官方网站   微博 | 高级检索  
     


Estimation of atmospheric surface layer parameters and numerical simulation using MM5 at Mangalore, West Coast of India
Authors:Anitha Kumari Hegde  R Venkatesan  C V Srinivas  K M Balakrishna
Affiliation:1. Physics Department, Mangalagangotri, Mangalore University, Mangalore, India
2. Indira Gandhi Centre for Atomic Research, Kalpakkam, India
Abstract:Atmospheric surface layer meteorological observations obtained from 20-m-high meteorological tower at Mangalore, situated along the west coast of India are used to estimate the surface layer scaling parameters of roughness length (z o) and drag coefficient (C D), surface layer fluxes of sensible heat and momentum. These parameters are computed using the simple flux–profile relationships under the framework of Monin–Obukhov (M–O) similarity theory. The estimated values of z o are higher (1.35–1.54 m) than the values reported in the literature (>0.4–0.9 m) probably due to the undulating topography surrounding the location. The magnitude of C D is high for low wind speed (<1.5 m s?1) and found to be in the range 0.005–0.03. The variations of sensible heat fluxes (SHF) and momentum fluxes are also discussed. Relatively high fluxes of heat and momentum are observed during typical days on 26–27 February 2004 and 10–11 April 2004 due to the daytime unstable atmospheric conditions. Stable or near neutral conditions prevail after 1700 h IST with negative SHF. A mesoscale model PSU/NCAR MM5 is run using a high-resolution (1 km) grid over the study region to examine the influence of complex topography on the surface layer parameters and the simulated fluxes are compared with estimated values. Spatial variations of the frictional velocity (u *), C D, surface fluxes, planetary boundary layer (PBL) height and surface winds are noticed according to the topographic variations in the simulation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号