首页 | 官方网站   微博 | 高级检索  
     


Analyzing sediment dissolved oxygen based on microprofile modeling
Authors:Chao Wang  Baoqing Shan  Hong Zhang  Nan Rong
Affiliation:1. State Key Laboratory on Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
2. University of Chinese Academy of Sciences, Beijing, 100049, China
Abstract:Sediment plays a key role in controlling the oxygen demand of aquatic systems. The reaction rate, penetration depth, and flux across the sediment–water interface (SWI) are important factors in sediment oxygen consumption. However, there were few methods to collect these data until recently. In this study, methods were developed to simulate the oxygen microprofile and calculate the sediment oxygen consumption rate, oxygen penetration depth, and oxygen flux across the SWI. We constructed a sediment oxygen measuring system using an oxygen microelectrode and a control device. The simulation equations were derived from both zero and first-order kinetic models, while the penetration depth and the oxygen flux were calculated from the simulation results. The method was tested on four prepared sediment samples. Decreases in dissolved oxygen in surface sediment were clearly detected by the microelectrode. The modeled data were a good fit for the observed data (R 2?>?0.95), and zero-order kinetics were more suitable than first-order kinetics. The values for penetration depth (1.3–3.9 mm) and oxygen fluxes (0.061–0.114 mg/cm2/day) calculated by our methods are comparable with those from other studies.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号