首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   31篇
  国内免费   42篇
工业技术   273篇
  2022年   6篇
  2021年   4篇
  2020年   5篇
  2019年   7篇
  2018年   9篇
  2017年   6篇
  2016年   4篇
  2015年   3篇
  2014年   14篇
  2013年   13篇
  2012年   23篇
  2011年   25篇
  2010年   16篇
  2009年   17篇
  2008年   25篇
  2007年   19篇
  2006年   23篇
  2005年   18篇
  2004年   15篇
  2003年   10篇
  2002年   5篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1993年   1篇
排序方式: 共有273条查询结果,搜索用时 109 毫秒
1.
《Ceramics International》2022,48(14):20134-20145
M-type calcium hexaferrite- CaFe12O19 (CaM) has been prepared in presence of Azadirachta indica, and Murraya koenigii leaves extracts, followed by calcination at 650 °C for 3h. It was observed that the presence of phytochemicals in both leaves extract plays a vital role in deciding the structural, optical, microstructural, magnetic, and dielectric properties of prepared CaM hexaferrites. Prepared samples were characterized using FT-IR, XRD, UV–Vis, SEM, VSM, and dielectric measurements. FTIR, UV– Vis, and antioxidant assay confirmed the presence of phenolic content and antioxidant property of plant extract. This further resulted in the formation of a pure hexagonal phase as revealed by the XRD analysis. The surface morphology of prepared ferrites modified through this greener route was illustrated by the spongy appearance of ferrites in SEM micrographs.The saturation magnetization for the CaM powder prepared using Murraya koenigii leaves extract is 11.78 Am2/kg, while that prepared from Azadirachta indica leaves extract is 3.56 Am2/kg. Both samples show a magnetically soft nature, with a multidomain structure. The energy bandgap was also observed to be 2.01 eV. Moreover, the calcium ferrite synthesized by Murraya koenigii leaves had εmax ~ 25 and that synthesized in presence of Azadirachta indica leaves had εmax ~ 200 at ~20 Hz.  相似文献   
2.
《Ceramics International》2022,48(20):29561-29571
Currently, materials with outstanding absorption abilities, such as thin size, better absorbing power, and light weight are the need of industry to resolve the electromagnetic issues. However, the research on optimizing the composition of the material, microstructure and the structure of the absorber are also the important factors for enhancing the absorption features. A metamaterial microwave absorber (MMA) based on nano ferrites with desirable absorption peaks is proposed and simulated. Sol-gel auto combustion route is used to prepare the nanosized Sm doped Co ferrite with Co1+xSmxFe2-2xO4 at x = 0.00, 0.03, 0.06, 0.09, respectively. XRD, VSM, FESEM, and VNA were employed to evaluate the structural, magnetic, morphological, and dielectric features. Rietveld refinement of the XRD patterns of samples was evaluated. Refined parameters show the spinel phase's emergence and the Fe2O3 phase. Grain size and crystallite size were increased with Sm doping in Co ferrite. Electromagnetic studies depicted that the highest dielectric constant value was found at x = 0.09 and the minimum value at x = 0.03, respectively. Sm doped Co ferrite at x = 0.09 depicted high Q values at higher frequencies. The coercivity values first decreased and then increased. All samples exhibit variations in coercivity and magneto-crystalline anisotropy constant. This variation was attributed to the super-exchange interactions and strong LS coupling of the cations. The multiple absorption peaks are attained for TE-polarization, and the absorptivity is considerably improved for x = 0.09. The proposed absorber simulated from CST depicted the absorption peaks of the S-band and C-band of the microwave regime. The synergistic effects among the metamaterial and ferrite layers may enhance the absorption feature and would be useful for satellite communication applications.  相似文献   
3.
《Ceramics International》2022,48(3):3833-3840
Ca-doped Ni–Mg–Mn spinel ferrites with compositions of Ni0·5Mg0·3Mn0.2CaxFe2-xO4 (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) were prepared via sol-gel auto-ignition technique. TGA/DTA, FTIR, XRD, FESEM, and VSM were employed to evaluate the thermal, spectral, structural, morphological, and magnetic features of Ca-doped Ni–Mg–Mn spinel ferrites. TGA/DTA curves show the weight loss in the sample. This weight loss was attributed to the oxidation and decomposition of the sample contents at a temperature of 500 °C. XRD reveals a single-phase structure of the Ni–Mg–Mn nano ferrites. A single-phase orthorhombic structure was confirmed for Ca-doped Ni–Mg–Mn ferrites. Structural parameters such as lattice parameter, ‘da’, ‘db’, ‘dc’, and ‘dv’ were evaluated using unit cell software. The absorption peaks at 427 to 538 cm?1 confirmed the spinel structure, which was evaluated using FTIR. FESEM analyses showed that the agglomerations increased with the doping of Ca in Ni–Mg–Mn ferrites. Remanence, Y–K angles, saturation, coercive force, magnetic squareness, magnetic moment, and anisotropy constant were determined for Ca-doped Ni–Mg–Mn spinel ferrite samples. It is noticed that saturation increases from 29.157 to 51.322 emu/g, whereas remanence increased from 5.34 to 9.40 emu/g, respectively. The permeability, anisotropy constant, and magnetic moments were also found to increase with Ca doping. However, the Y–K angles increased with Ca concentration in Ni–Mg–Mn nano ferrites. In addition, the switching field distribution (SFD) and high-frequency response of all the Ca-doped Ni–Mg–Mn samples were also evaluated. Ca-doped Ni–Mg–Mn samples are suggested to be suitable for switching, filters, inductors, and microwave absorption applications because of the superparamagnetic nature of the prepared spinel ferrites.  相似文献   
4.
《Ceramics International》2020,46(2):1750-1759
Cobalt (Co) doped MgZn spinel nanoferrites with composition Mg0.5Zn0.5Cox Fe2-xO4 at x = 0.0, 0.10, 0.20, 0.30, 0.40, 0.50 were prepared using sol-gel auto ignition method. The characterizations techniques such as FESEM, FTIR, XRD and VSM were used to determine the morphology, force constants, phase, structure and magnetic features of the samples. Lattice parameters, FWHM, d-spacing, crystallite size, micro strains and volume were investigated using high score plus software. Materials analysis using diffraction (MAUD) software was also used to study the Rietveld refinement properties of the Co doped MgZn ferrites. Physical properties such as porosity, X-ray and bulk density were also determined. Force constants of their respective absorption bands were calculated from FTIR of the Co doped MgZn nanoferrites. Single phase structure with cubic phase were observed for MgZn and Co doped MgZn at x = 0.0 whereas second phase was observed at higher Co concentrations respectively. FESEM show regular shape of the particles at low Co concentrations whereas agglomerations were observed at higher Co concentrations respectively. The magnetic properties of the Co doped MgZn ferrites were also investigated from VSM study. Magnetic remanence, coercivity, initial permeability, saturation magnetization, Bohr magneton and anisotropy constant were determined from VSM analysis. The coercivity, saturation magnetization, remanence, anisotropy constant and initial permeability were enhanced with the doping of ‘Co’ in MgZn nanoferrites. Response of the Co doped MgZn nanoferrites at high frequency regime was also evaluated. It can be seen that the response from all the Co doped MgZn nanoferrites was 2.84 GHz–5.96 GHz respectively and suggested the use of these nanoferrites for the operation of nanodevices in the X-band high frequency regime.  相似文献   
5.
Rare earths(REs) play a key role in distorting spinel structure by creating some defects at the lattice sites and make them suitable for magnetodielectric applications.In the present study,the nanoferrites of CuRE_(0.02)Fe_(1.98)O_4,where REs=Y~(3+),Yb~(3+),Gd~(3+),were prepared using one step sol-gel method.The prepared samples are copper ferrite(CFO),yttrium doped copper ferrite(Y-CFO),ytterbium doped copper ferrite(Yb-CFO) and gadolinium doped copper ferrite(Gd-CFO),respectively.The single-phase structure of all the REs doped nanoferrites was determined by X-ray diffraction(XRD) analysis.The porosity,agglomerations and grain size of the REs doped copper ferrite were examined using field emission scanning electron microscopy(FESEM) analysis.Fourier transform infrared spectroscopy(FTIR)elaborates the phase formation and environmental effects on the REs doped nanoparticles(NPs).The recorded room temperature M-H loops from a vibrating sample magnetometer(VSM) elucidate the magnetic properties of the REs doped spinel nanoferrites.The magnetic saturation(M_s) was calculated in the range of 23.08 to 51.78 emu/g.The calculated coercivity values(272.6 to 705.60 Oe) confirm the soft magnetic behavior of REs doped copper ferrites.Furthermore,the electromagnetic and dielectric properties were assessed using a Vector network analyzer(VNA) from 1 to 6 GHz.The permeability,permittivity,dielectric tangent loss and electric modulus of the REs doped spinel ferrites illustrate that the prepared NPs may be suitable for microwave and high frequency applications.  相似文献   
6.
Various techniques such as X-ray diffraction (XRD), infrared (IR) spectroscopy, scanning electron micrographs (SEM), energy dispersive X-ray (EDX) and a vibrating sample magnetometer (VSM) were used to investigate the structural, morphological, and magnetic properties of spinel Co0.5Ni0.5Fe2O4 system. XRD and IR analyses enabled us to determine the functional group and structural parameters of Co0.5Ni0.5Fe2O4. EDX measurements showed the concentrations of O, Ni, Fe, and Co species involved in Co0.5Ni0.5Fe2O4 specimen from the uppermost surface to the bulk layers. The magnetization and coercivity of the as synthesized composite were 77 emu/g and 128 Oe, respectively.  相似文献   
7.
《Ceramics International》2020,46(17):26521-26529
Rare earths (Res) doped Mn spinel nanoferrites with nominal composition MnR0.2Fe1·8O4 (REs = Tb, Pr, Ce, Y and Gd) were synthesized using sol gel method. FTIR, XRD and FESEM were employed to evaluate the structure, phase, vibrational bands, morphology, grain size and microstructure respectively. VSM was employed to investigate the magnetic features of the Mn nanoferrite and REs doped Mn nanoferrites. XRD confirmed the single-phase cubic structure of Mn nanoferrite whereas tetragonal phase was observed for all REs doped Mn nanoferrites. Unit cell software was used to determine the structural features such as lattice parameter, cell volume, ‘da’, ‘db’, ‘dc’ and ‘dv’ respectively. FTIR results demonstrated the absorption peaks of Mn and REs doped Mn ferrite at 647-674 cm−1. FESEM results depicted the irregular shapes of the particles with large agglomerations in the prepared samples. The grain size evaluated by LIM (line intercept method) found in the range of 94 to 213 nm respectively. Saturation magnetization was increased from 1.332 to 38.097 emu/g whereas remanence was increased from 1.096 to 25.379 emu/g respectively. In addition, other magnetic parameters such as initial permeability, magnetic anisotropy and magnetic moments were also increased. Moreover, Y–K angles showed significant response with REs doping in Mn ferrites. Furthermore, high frequency response and switching field distribution (SFD) of Mn ferrite and REs doped Mn ferrites were also determined. It is found that Y doped Mn ferrite depicted better high frequency and SFD response as compared to Mn ferrite and REs doped Mn ferrites. The coercivity of all these pure Mn ferrite and rare earth's substituted Mn ferrites (425–246 Oe) was higher as compared to the pure Mn and yttrium substituted Mn ferrite (107–217 Oe. Therefore, it was suggested that Y doped Mn ferrite was more suitable candidate for switching, and high frequency absorption applications in microwave regime.  相似文献   
8.
《Ceramics International》2022,48(14):20418-20425
Magneto-optical TiO2/xCoFe2O4 nanocomposites having various concentrations of CoFe2O4 (x = 2, 4 and 6 wt %) were prepared using facile mechanical mixing. X-ray diffraction was employed for the phase examination and microstructure parameters. X-ray diffraction spectra proved the formation of two separate phases: tetragonal titanium dioxide (TiO2) and face-centered cubic cobalt iron oxide. The structure was further verified by recognizing the selected area electron diffraction (SAED) pattern recorded by a high-resolution transmission microscope. The optical investigation of the prepared nanocomposites verified that the optical band gap values varied from 3.1 eV for pure TiO2 to 3.05 eV for TiO2/CoFe2O4 (6 wt %). The refractive index, optical dielectric constant and loss factor were discussed in detail. The nanocomposites (TiO2/xCoFe2O4) demonstrated ferromagnetic characteristics and their magnetic parameters were affected by the CoFe2O4 percentage in the composites. The sample x = 2 wt % depicted the maximum magnetic exchange bias at room temperature. Moreover, it showed maximum coercivity (HC) and magnetic squareness ratio (SQ), which makes it suitable for spintronic applications.  相似文献   
9.
文本的特征选择可以被看成是组合优化问题,而遗传算法是求解此类问题的较好方法。在遗传算法的基础上,提出了一种新的算法-免疫算法,用于文本的特征选择,通过免疫算子的构造,减轻了遗传算法后期的波动现象,提高了收敛速度。  相似文献   
10.
M.A. Gabal 《Materials Letters》2010,64(17):1887-4867
CuFe2  xCrxO4 (0 ≤ x ≤ 1) nanopowders were successfully synthesized by a simple method using metal nitrates and freshly extracted egg white. The resultant powders annealed at 550 °C for 2 h and were investigated by X-ray diffractometer (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and vibrating sample magnetometer (VSM). The results revealed the formation of cubic spinel structure at Cr concentrations ≥ 0.2. In spite of the lattice constant is hardly changed with increasing of Cr content, the magnetic properties of Cr-substituted copper ferrite are strongly affected. The saturation magnetization, remanent magnetization, and coercive force were found to decrease monotonously with increasing of Cr content.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号