首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2538篇
  免费   152篇
  国内免费   73篇
工业技术   2763篇
  2024年   2篇
  2023年   33篇
  2022年   34篇
  2021年   57篇
  2020年   57篇
  2019年   58篇
  2018年   45篇
  2017年   59篇
  2016年   69篇
  2015年   89篇
  2014年   141篇
  2013年   135篇
  2012年   151篇
  2011年   172篇
  2010年   106篇
  2009年   137篇
  2008年   139篇
  2007年   168篇
  2006年   165篇
  2005年   150篇
  2004年   129篇
  2003年   113篇
  2002年   99篇
  2001年   63篇
  2000年   66篇
  1999年   49篇
  1998年   62篇
  1997年   41篇
  1996年   26篇
  1995年   38篇
  1994年   30篇
  1993年   19篇
  1992年   14篇
  1991年   5篇
  1990年   11篇
  1989年   5篇
  1988年   7篇
  1987年   7篇
  1986年   4篇
  1985年   1篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
排序方式: 共有2763条查询结果,搜索用时 203 毫秒
1.
从MR原始数据特性出发研究数据结构与字段,采用基于线状特性分析MR大数据的地铁用户识别过滤方法和位置定位方法,该方法经过验证能够有效输出地铁用户数据并定位在地图上,解决人工地铁测试效率低且测试片面的问题,实现基于大数据的自动化地铁网络评估,提供海量的有效定位数据用于地铁评估与分析。  相似文献   
2.
为了解决尺度不变特征变换(SIFT)算法在图像匹配中匹配正确率低、耗时长等问题,提出一种基于改进网格运动统计特征RANSAC-GMS的图像匹配算法。首先,利用快速旋转不变性特征(ORB)算法对图像进行预匹配,对预匹配的特征点采用网格运动统计(GMS)来支持估计量以实现正确匹配点与错误匹配点的区分;然后,采用改进的随机抽样一致性(RANSAC)算法通过匹配点间的距离相似性对特征点进行筛选,并采用评价函数对筛选后的新数据集进行重新整理,进而实现对误匹配点的剔除。采用Oxford标准图库和现实中拍摄的图像对图像匹配算法进行测试对比,实验结果表明,所提算法在图像匹配中的平均匹配正确率达到91%以上;与GMS、SIFT、ORB等算法相比,该改进算法的近景匹配正确率和远景匹配正确率分别最少提高了16.15个百分点和3.56个百分点,说明它能有效剔除误匹配点,进一步提高图像匹配精度。  相似文献   
3.
One of the UNESCO intangible cultural heritages Bunraku puppets can play one of the most beautiful puppet motions in the world. The Bunraku puppet motions can express emotions without the so-called ‘Uncanny Valley.’ We try to convert these emotional motions into robot affective motions so that robots can interact with human beings more comfortable. In so doing, in the present paper, we present a robot motion design framework using Bunraku affective motions that are based on the so-called ‘Jo-Ha-Kyū,’ and convert a few simple Bunraku motions into a robot motions using one of deep learning methods. Our primitive experiments show that Jo-Ha-Kyū can be incorporated into robot motion design smoothly, and some simple affective robot motions can be designed using our proposed framework.  相似文献   
4.
Automatic synthesis of realistic gestures promises to transform the fields of animation, avatars and communicative agents. In off-line applications, novel tools can alter the role of an animator to that of a director, who provides only high-level input for the desired animation; a learned network then translates these instructions into an appropriate sequence of body poses. In interactive scenarios, systems for generating natural animations on the fly are key to achieving believable and relatable characters. In this paper we address some of the core issues towards these ends. By adapting a deep learning-based motion synthesis method called MoGlow, we propose a new generative model for generating state-of-the-art realistic speech-driven gesticulation. Owing to the probabilistic nature of the approach, our model can produce a battery of different, yet plausible, gestures given the same input speech signal. Just like humans, this gives a rich natural variation of motion. We additionally demonstrate the ability to exert directorial control over the output style, such as gesture level, speed, symmetry and spacial extent. Such control can be leveraged to convey a desired character personality or mood. We achieve all this without any manual annotation of the data. User studies evaluating upper-body gesticulation confirm that the generated motions are natural and well match the input speech. Our method scores above all prior systems and baselines on these measures, and comes close to the ratings of the original recorded motions. We furthermore find that we can accurately control gesticulation styles without unnecessarily compromising perceived naturalness. Finally, we also demonstrate an application of the same method to full-body gesticulation, including the synthesis of stepping motion and stance.  相似文献   
5.
The facts show that multi-instance multi-label (MIML) learning plays a pivotal role in Artificial Intelligence studies. Evidently, the MIML learning introduces a framework in which data is described by a bag of instances associated with a set of labels. In this framework, the modeling of the connection is the challenging problem for MIML. The RBF neural network can explain the complex relations between the instances and labels in the MIMLRBF. The parameters estimation of the RBF network is a difficult task. In this paper, the computational convergence and the modeling accuracy of the RBF network has been improved. The present study aimed to investigate the impact of a novel hybrid algorithm consisting of Gases Brownian Motion optimization (GBMO) algorithm and the gradient based fast converging parameter estimation method on multi-instance multi-label learning. In the current study, a hybrid algorithm was developed to estimate the RBF neural network parameters (the weights, widths and centers of the hidden units) simultaneously. The algorithm uses the robustness of the GBMO to search the parameter space and the efficiency of the gradient. For this purpose, two real-world MIML tasks and a Corel dataset were utilized within a two-step experimental design. In the first step, the GBMO algorithm was used to determine the widths and centers of the network nodes. In the second step, for each molecule with fixed inputs and number of hidden nodes, the parameters were optimized by a structured nonlinear parameter optimization method (SNPOM). The findings demonstrated the superior performance of the hybrid algorithmic method. Additionally, the results for training and testing the dataset revealed that the hybrid method enhances RBF network learning more efficiently in comparison with other conventional RBF approaches. The results obtain better modeling accuracy than some other algorithms.  相似文献   
6.
In this paper, we propose a H.264/AVC compressed domain human action recognition system with projection based metacognitive learning classifier (PBL-McRBFN). The features are extracted from the quantization parameters and the motion vectors of the compressed video stream for a time window and used as input to the classifier. Since compressed domain analysis is done with noisy, sparse compression parameters, it is a huge challenge to achieve performance comparable to pixel domain analysis. On the positive side, compressed domain allows rapid analysis of videos compared to pixel level analysis. The classification results are analyzed for different values of Group of Pictures (GOP) parameter, time window including full videos. The functional relationship between the features and action labels are established using PBL-McRBFN with a cognitive and meta-cognitive component. The cognitive component is a radial basis function, while the meta-cognitive component employs self-regulation to achieve better performance in subject independent action recognition task. The proposed approach is faster and shows comparable performance with respect to the state-of-the-art pixel domain counterparts. It employs partial decoding, which rules out the complexity of full decoding, and minimizes computational load and memory usage. This results in reduced hardware utilization and increased speed of classification. The results are compared with two benchmark datasets and show more than 90% accuracy using the PBL-McRBFN. The performance for various GOP parameters and group of frames are obtained with twenty random trials and compared with other well-known classifiers in machine learning literature.  相似文献   
7.
A two-layered modeling and compensation scheme is proposed to reduce the contouring error of a three-dimensional motion control system. In the proposed scheme, the contouring error model of the three-dimensional motion control system is divided into two layers: the top layer and the bottom layer. The proposed multi-layered structure of the contouring error model presents more flexibility in the control system design because the cross coupling controllers in different layers can be designed separately. In this paper, a nonlinear PI controller and a position error compensator are designed in the bottom layer in order to achieve high contouring accuracy in the XY plane, while a unilateral compensator is designed in the top layer to further reduce contouring error in the three dimensional space. Finally, experiments are performed to verify the performance of the proposed two-layered modeling and compensation scheme. Experiment results show that the designed two-layered cross coupling controller can obtain higher contouring accuracy than traditional cross coupling controller both in the XY plane and in the XYZ space.  相似文献   
8.
For the last decades, the concern of producing convincing facial animation has garnered great interest, that has only been accelerating with the recent explosion of 3D content in both entertainment and professional activities. The use of motion capture and retargeting has arguably become the dominant solution to address this demand. Yet, despite high level of quality and automation performance-based animation pipelines still require manual cleaning and editing to refine raw results, which is a time- and skill-demanding process. In this paper, we look to leverage machine learning to make facial animation editing faster and more accessible to non-experts. Inspired by recent image inpainting methods, we design a generative recurrent neural network that generates realistic motion into designated segments of an existing facial animation, optionally following user-provided guiding constraints. Our system handles different supervised or unsupervised editing scenarios such as motion filling during occlusions, expression corrections, semantic content modifications, and noise filtering. We demonstrate the usability of our system on several animation editing use cases.  相似文献   
9.
Observational ergonomic postural assessment methods have been commonly used to evaluate the risks of musculoskeletal disorders. Researchers have proposed semi-automatic methods using Kinect, known for limitations with body occlusions and non-frontal tracking. Meanwhile, new human pose estimation methods have been actively developed, and a popular open-source technology is OpenPose. This study aims to propose the OpenPose-based system for computing joint angles and RULA/REBA scores and validate against the reference motion capture system, and compare its performance to the Kinect-based system. Recordings of 10 participants performing 12 experimental tasks under different conditions: with/without body occlusions and tracked from frontal/non-frontal views were analyzed. OpenPose showed good performance under all task conditions, whereas Kinect performed significantly worse than OpenPose especially at cases with body occlusions or non-frontal tracking. The findings suggested that OpenPose could be a promising technology to measure joint angles and conduct semi-automatic ergonomic postural assessments in the real workspace where the conditions are often non-ideal.  相似文献   
10.
三维实体造型技术在装载机工作装置设计中的应用   总被引:1,自引:0,他引:1  
杨卫平  舒嵘 《矿山机械》2005,33(6):32-33
机械产品都是具有三维空间形状的物体,设计者头脑中建立起来的首先是其三维实体形状。过去常用正投影方法,把头脑中的三维实体分别投影到多个二维视图上,而每个视图只能表示设计对象的局部信息。随后其他技术人员又需要将分散于各个视图中的局部信息,通过想象加以综合,恢复为设计者头脑中的原来的三维实体形状,再对其进行分析、工艺设计和加工等工作,这在实际工程中这往往是非常复杂的过程。如果上述过程中哪一步产生错误,就得返回前边的过程,纠正后再继续进行。如此将耗费大量时间、人力和物力。如果采用三维实体造型技术,直接用三维实体来表达设计对象,并预先在计算机上做装配、检查、分析、修改和加工等工作,这不但可省去从三维转换为二维,再从二维恢复为三维这样的人工思维过程,而且设计过程将更加直观、全面,更能符合设计需要,效率也将大大提高,还解决了二维图纸中长期表达不清楚的问题。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号