首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   9篇
  国内免费   8篇
工业技术   61篇
  2024年   1篇
  2022年   4篇
  2021年   1篇
  2020年   5篇
  2019年   4篇
  2018年   2篇
  2017年   4篇
  2016年   6篇
  2015年   2篇
  2014年   7篇
  2013年   7篇
  2012年   6篇
  2011年   2篇
  2010年   1篇
  2009年   4篇
  2007年   3篇
  2004年   1篇
  1991年   1篇
排序方式: 共有61条查询结果,搜索用时 31 毫秒
1.
Mass production, meeting the increasing demands of the customers is a necessity. Such a production is mainly dependent on a factory manufacturing called flow line production. This paper deals with special type of production by the name of flexible manufacturing system, assuming the presence of multi processors in each station of a multi-station arrangement. The model debated in the paper possesses three objective functions, the first of which attempts to minimize the weighted delays. The second objective function tries to minimize the capital for the purchase of the processors at stations and the third objective function minimizes the capital dedicated to select the optimum processing route of parts. For the validation of the mathematical model, use has been made of NSAGAII and MOPSO approaches.  相似文献   
2.
3.
In this study, an integrated multi-objective production-distribution flow-shop scheduling problem will be taken into consideration with respect to two objective functions. The first objective function aims to minimize total weighted tardiness and make-span and the second objective function aims to minimize the summation of total weighted earliness, total weighted number of tardy jobs, inventory costs and total delivery costs. Firstly, a mathematical model is proposed for this problem. After that, two new meta-heuristic algorithms are developed in order to solve the problem. The first algorithm (HCMOPSO), is a multi-objective particle swarm optimization combined with a heuristic mutation operator, Gaussian membership function and a chaotic sequence and the second algorithm (HBNSGA-II), is a non-dominated sorting genetic algorithm II with a heuristic criterion for generation of initial population and a heuristic crossover operator. The proposed HCMOPSO and HBNSGA-II are tested and compared with a Non-dominated Sorting Genetic Algorithm II (NSGA-II), a Multi-Objective Particle Swarm Optimization (MOPSO) and two state-of-the-art algorithms from recent researches, by means of several comparing criteria. The computational experiments demonstrate the outperformance of the proposed HCMOPSO and HBNSGA-II.  相似文献   
4.
The inability of conventional energy sources to fully meet the rapidly increasing energy demands in today’s world has led to the growing importance of hybrid power generation systems that incorporate renewable energy sources. This work proposes an optimally designed multi-source standalone hybrid generation system comprising of photovoltaic panels, wind turbine generators, batteries and diesel generator. This design aims at minimizing emissions and cost, expressed in the form of the Net Present Value (NPV) of the system, while simultaneously maximizing its Energy Index of Reliability (EIR). The designed hybrid power generation system is further integrated into the distribution system as a Distributed Generation (DG); this is to optimally improve the performance of the distribution system by minimizing the total losses and the total voltage deviation of the distribution system. The combined cost and emissions incurred due to the energy purchased from the grid and the energy generated by DG are also reduced. For this purpose an improvised Multi-Objective Particle Swarm Optimization (MOPSO) algorithm is developed taking care of contradicting objectives. The proposed optimization algorithms are implemented using MATLAB for a standard IEEE 69-bus distribution system, using an hour-wise annual data of Spain. The location and size of DGs and the type and number of each generating source of the hybrid system are considered as decision variables. The effectiveness of the proposed optimal design using the improvised MOPSO algorithm is established in comparison with Improved Hybrid Optimization by Genetic Algorithm (i-HOGA) results.  相似文献   
5.
针对机械手逆解问题,首次给出了粒子群算法优化机械手的方法,以优化结果确定逆解。其次定义了机械手的危险度概念,并将多目标粒子群算法应用于带有危险源和障碍物环境中的冗余机械手逆运动学研究。相比传统方法,该多目标优化方法不仅确定了冗余机械手的最终形状,而且能够使其成功避障,满足避障可操作、危险度和功率最省或更多的多目标要求。相比多目标遗传算法的仿真结果,该方法可以得到更理想的性能指标,通过进一步的3个指标试验仿真,证明了该方法的正确性和有效性。  相似文献   
6.
In this paper, a bi-objective multi-products economic production quantity (EPQ) model is developed, in which the number of orders is limited and imperfect items that are re-workable are produced. The objectives of the problem are minimization of the total inventory costs as well as minimizing the required warehouse space. The model is shown to be of a bi-objective nonlinear programming type, and in order to solve it two meta-heuristic algorithms namely, the non-dominated sorting genetic algorithm (NSGA-II) and multi-objective particle swarm optimization (MOPSO) algorithm, are proposed. To verify the solution obtained and to evaluate the performance of proposed algorithms, two-sample t-tests are employed to compare the means of the first objective value, the means of the second objective values, and the mean required CPU time of solving the problem using two algorithms. The results show while both algorithms are efficient to solve the model and the solution qualities of the two algorithms do not differ significantly, the computational CPU time of MOPSO is considerably lower than that of NSGA-II.  相似文献   
7.
基于混沌多目标粒子群优化算法的云服务选择   总被引:1,自引:0,他引:1  
随着云计算环境中各种服务数量的急剧增长,如何从功能相同或相似的云服务中选择满足用户需求的服务成为云计算研究中亟待解决的关键问题。为此,建立带服务质量约束的多目标服务组合优化模型,针对传统多目标粒子群优化(MOPSO)算法中解的多样性差、易陷入局部最优等缺点,设计基于混沌多目标粒子群优化(CMOPSO)算法的云服务选择方法。采用信息熵理论来维护非支配解集,以保持解的多样性和分布的均匀性。当种群多样性丢失时,引入混沌扰动机制,以提高种群多样性和算法全局寻优能力,避免陷入局部最优。实验结果表明,与MOPSO算法相比,CMOPSO算法的收敛性和解集多样性均得到改善,能够更好地解决云计算环境下服务动态选择问题。  相似文献   
8.
Ionic interactions in the two systems NaCl-HEPES (N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid) and NaCl-MOPSO (3-(N-Morpholino)-2-hydroxypropanesulfonic acid) have been studied in terms of their mutual influence on the respective activity coefficients of each component. Activity coefficients for each component of the two systems and for corresponding buffers are calculated from emf measurements of solutions containing NaCl, the aminosulfonic acid, and its conjugate base in a NalSE/solution/AgCl-Ag cell at 5, 15, 25, and 37 °C.  相似文献   
9.
Cell formation is a traditional problem in cellular manufacturing systems that concerns the allocation of parts, operators and machines to the cells. This paper presents a new mathematical programming model for cell formation in which operators’ personality and decision-making styles, skill in working with machines, and also job security are incorporated simultaneously. The model involves the following five objectives: (1) minimising costs of adding new machines to and removing machines from the cells at the beginning of each period, (2) minimising total cost of material handling, (3) maximising job security, (4) minimising inconsistency of operators’ decision styles in cells and (5) minimising cost of suitable skill. On account of the NP-hard nature of the proposed model, NSGA-II as a powerful meta-heuristic approach is used for solving large-sized problems. Furthermore, response surface methodology (RSM) is used for tuning the parameters. Lastly, MOPSO and two scalarization methods are employed for validation of the results obtained. To the best of our knowledge, this is the first study that presents a multi-objective mathematical model for cell formation problem considering operators’ personality and skill, addition and removal of machines and job security.  相似文献   
10.
Tolerance specification is an important part of mechanical design. Design tolerances strongly influence the functional performance and manufacturing cost of a mechanical product. Tighter tolerances normally produce superior components, better performing mechanical systems and good assemblability with assured exchangeability at the assembly line. However, unnecessarily tight tolerances lead to excessive manufacturing costs for a given application. The balancing of performance and manufacturing cost through identification of optimal design tolerances is a major concern in modern design. Traditionally, design tolerances are specified based on the designer’s experience. Computer-aided (or software-based) tolerance synthesis and alternative manufacturing process selection programs allow a designer to verify the relations between all design tolerances to produce a consistent and feasible design. In this paper, a general new methodology using intelligent algorithms viz., Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) and Multi Objective Particle Swarm Optimization (MOPSO) for simultaneous optimal selection of design and manufacturing tolerances with alternative manufacturing process selection is presented. The problem has a multi-criterion character in which 3 objective functions, 3 constraints and 5 variables are considered. The average fitness factor method and normalized weighted objective functions method are separately used to select the best optimal solution from Pareto optimal fronts. Two multi-objective performance measures namely solution spread measure and ratio of non-dominated individuals are used to evaluate the strength of Pareto optimal fronts. Two more multi-objective performance measures namely optimiser overhead and algorithm effort are used to find the computational effort of NSGA-II and MOPSO algorithms. The Pareto optimal fronts and results obtained from various techniques are compared and analysed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号