首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2333篇
  免费   83篇
  国内免费   36篇
工业技术   2452篇
  2024年   2篇
  2023年   14篇
  2022年   37篇
  2021年   31篇
  2020年   38篇
  2019年   25篇
  2018年   29篇
  2017年   36篇
  2016年   59篇
  2015年   50篇
  2014年   122篇
  2013年   113篇
  2012年   102篇
  2011年   153篇
  2010年   114篇
  2009年   139篇
  2008年   142篇
  2007年   148篇
  2006年   143篇
  2005年   106篇
  2004年   143篇
  2003年   121篇
  2002年   82篇
  2001年   72篇
  2000年   67篇
  1999年   61篇
  1998年   37篇
  1997年   35篇
  1996年   39篇
  1995年   47篇
  1994年   27篇
  1993年   28篇
  1992年   16篇
  1991年   23篇
  1990年   10篇
  1989年   12篇
  1988年   4篇
  1987年   7篇
  1986年   4篇
  1985年   2篇
  1984年   8篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
排序方式: 共有2452条查询结果,搜索用时 156 毫秒
1.
Green hydrogen produced from intermittent renewable energy sources is a key component on the way to a carbon neutral planet. In order to achieve the most sustainable, efficient and cost-effective solutions, it is necessary to match the dimensioning of the renewable energy source, the capacity of the hydrogen production and the size of the hydrogen storage to the hydrogen demand of the application.For optimized dimensioning of a PV powered hydrogen production system, fulfilling a specific hydrogen demand, a detailed plant simulation model has been developed. In this study the model was used to conduct a parameter study to optimize a plant that should serve 5 hydrogen fuel cell buses with a daily hydrogen demand of 90 kg overall with photovoltaics (PV) as renewable energy source. Furthermore, the influence of the parameters PV system size, electrolyser capacity and hydrogen storage size on the hydrogen production costs and other key indicators is investigated. The plant primarily uses the PV produced energy but can also use grid energy for production.The results show that the most cost-efficient design primarily depends on the grid electricity price that is available to supplement the PV system if necessary. Higher grid electricity prices make it economically sensible to invest into higher hydrogen production and storage capacity. For a grid electricity price of 200 €/MWh the most cost-efficient design was found to be a plant with a 2000 kWp PV system, an electrolyser with 360 kW capacity and a hydrogen storage of 575 kg.  相似文献   
2.
The ability of landscape architectural projects to mitigate the worst effects of climate change will depend upon designed ecological systems. These systems will be built with plants. Despite the recognition of ecology as an essential driver of landscapes, the professionals of landscape architecture too often lack the knowledge and practical skills to create robust vegetative systems. New approaches and tools are required. This article outlines principles and methods for designing biodiverse plant systems for urban sites. Planting methods that increase species richness, functional diversity, and spatial complexity are emphasized as a way of developing more resilient plantings. Selecting species with similar evolutionary adaptions to stress, disturbance, and competition—as well as creating multi-layered compositions of diverse plant morphologies—allows designers to create compatible, long-lived plant mixes. To balance the increased visual complexity of diverse plant mixes, the article explores design techniques to make plantings more appealing to the public. The strategies explored here are based on the projects, experience, and research of Phyto Studio, a Washington, D.C. based studio. The methods build on work described in the author’s book, Planting in a Post-Wild World, an exploration of how to create designed plant communities.  相似文献   
3.
4.
Artificial light source for indoor cultivation has been vastly impeded by the lack of high far red emitting phosphors. Recently, Mn4+ activated phosphors were reported to be promising luminescent materials to solve above matter. In this study, controllable design of Ca14Al10Zn6O35:0.15Mn4+ (CAZO:0.15Mn4+) far red emitting phosphors was realized via pH assisted hydrothermal approach. The pure CAZO:0.15Mn4+ phosphors were obtained merely when the reaction pH was 1 or 2. Meanwhile, by adjusting the pH value of the reaction solution, far red emission CAZO:0.15Mn4+ phosphors with grains, sphere-like as well as aggregated bulk particles can be achieved at pH =?4, pH =?6 and pH =?10, respectively. Furthermore, the structures and morphologies depended photoluminescence (PL) performances of CAZO:0.15Mn4+ were checked. The best PL performance was found for the phosphor produced at pH =?6, while over acidic or alkaline conditions would lower the emission intensity. In addition, this phosphor also exhibit good thermal resistance which can maintain 78% initial intensity at 150?°C. The practical indoor tobacco cultivation demonstrated that CAZO:0.15Mn4+ obtained through this pH adjusted hydrothermal route is a promising phosphor for indoor plant growth lighting.  相似文献   
5.
综述了近几年国内各大院校在生物质改性方面的研究现状,重点介绍了植物纤维类、木质素类、淀粉类生物质的改性研究情况。生物质原料成分具有多样性,为获得性能优异的生物质改性产物,往往以多种改性方法共同应用为主;生物质资源储量丰富,来源广泛,使其改性产物可以应用在多个领域,前景广阔。  相似文献   
6.
《Ceramics International》2020,46(12):20173-20182
Currently, phosphor-converted LEDs (pc-LEDs) are revolutionizing the industry of plant growth lighting. To meet the requirements of this technology, phosphors with tunable photoluminescence, high thermal stability and luminous intensity are required. Herein, we found that the simple substitution of yttrium for lanthanum in La2MgTiO6:Mn4+ (LMT:Mn4+) system could satisfy above three criteria simultaneously. The photoluminescence properties can be regulated by continuously controlling the chemical composition of La2-xYxMgTiO6:Mn4+ solid solution. The La sites are occupied by Y ions, causing a significant blue shift in the emission spectra which owing to the change of local crystal field strengthen. Meanwhile, the thermal stability and decay lifetimes are also varied due to the variation of local structure and band gap energy. The thermal stability of the material reaches 83.5% at 150 °C, which is better than the reported La2MgTiO6:Mn4+ and Y2MgTiO6:Mn4+ phosphors. The electronic luminescence (EL) of pc-LED devices using La2-xYxMgTiO6:Mn4+ red phosphor is evaluated, which matching the absorption regions of plant pigments well, reflecting the superiority of the studied phosphors in plant growth lighting areas.  相似文献   
7.
植物肉的出现为动物肉类食品供应短缺和养殖业环境污染问题带来希望。食品加工技术的快速发展弥补了植物基肉制品外观和口感的不足, 但其营养价值和安全性也应引起重视。本文综述了以植物蛋白为主要原料所制肉类替代品的营养价值, 包括植物肉中碳水化合物、蛋白质、脂肪、水分、维生素和矿物质的相对含量和营养性质。分析了植物肉在生产及食用过程中可能出现的物理、化学、生物因素在内的安全问题, 并探讨目前植物肉发展所存在的局限性与挑战, 以期为我国植物蛋白肉制品的研发与推广提供理论参考。  相似文献   
8.
To date, wood has been viewed as an attractive commodity because of its low relative cost and widespread availability. However, supply is increasingly strained, and, in many ways, trees make a non-ideal feedstock—with slow, climate and seasonally dependent growth, low yields of high-value products, and susceptibility to pests and disease. Recent research offered an approach to generate plant-based materials in vitro without needing to harvest or process whole plants, thereby enabling: localized, high-density production, elimination of energy-intensive collection and hauling, reduced processing, and inherent climate resilience. This work reports the first physical, mechanical, and microstructural characterization of 3-D printed, lab-grown, and tunable plant materials generated with Zinnia elegans cell cultures using such methodology. The data show that the properties of the resulting plant materials vary significantly with adjustments to hormone levels present in growth medium. In addition, configuration of the culture environment via bioprinting and casting enables the production of net-shape materials in forms and scales that do not arise naturally in whole plants. Finally, new comparative data on cell development in response to hormone levels in culture medium demonstrates the repeatability of growth trends, clarifies the relationship between developmental pathways, and helps to elucidate the relationships between cellular-level culture characteristics and emergent material properties.  相似文献   
9.
Plant materials with cellular structure, like fruits and vegetables, are often viewed as porous media in terms of model building of the drying process, on the basis of a hypothesis that all of the moisture of a plant tissue is trapped in a continuous and connected pore network system. However, most of the moisture in the plant tissue is contained naturally in enclosed cells. In the course of drying, the trapped moisture has to cross the cell membranes and then migrates in the extracellular space. Based on this concept, a pore network model for isothermal drying of plant materials was developed in which two stages of moisture movement—transmembrane transfer and extracellular transfer in the pore network—were considered. Finally, the isothermal convective air-drying processes of a potato slice were simulated. The calculated results were validated by the experiments conducted under the simulation conditions.  相似文献   
10.
The pre-hydrolysis liquor (PHL) of the kraft-based dissolving pulp production process is currently sent to the recovery boiler and incinerated. However, PHL contains about 5–8% lignocelluloses that can be utilized in the production of value-added chemicals. In this study, a process for producing xylitol from hemicelluloses in PHL is developed. This process involves several acidification, neutralization, adsorption (along with reactivation) and evaporation stages. The mass balance indicates that 533 kg/h xylitol (with 99% purity), 187 kg/h lignin, 806 kg/h basic ferric acetate, and 1600 kg/h gypsum can be produced from 41,670 kg/h PHL. The energy balance shows that the evaporators are the largest consumers of energy, while the reactivation kiln, acidification, neutralization, and precipitation processes generate some heat. Overall, 41% conversion of xylose to xylitol is achieved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号