首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   425篇
  免费   2篇
  国内免费   5篇
工业技术   432篇
  2023年   4篇
  2022年   7篇
  2021年   9篇
  2020年   16篇
  2019年   12篇
  2018年   8篇
  2017年   7篇
  2016年   2篇
  2015年   2篇
  2014年   28篇
  2013年   16篇
  2012年   9篇
  2011年   46篇
  2010年   19篇
  2009年   41篇
  2008年   31篇
  2007年   21篇
  2006年   30篇
  2005年   26篇
  2004年   20篇
  2003年   25篇
  2002年   15篇
  2001年   7篇
  2000年   4篇
  1999年   7篇
  1998年   2篇
  1997年   5篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
排序方式: 共有432条查询结果,搜索用时 31 毫秒
1.
Several samples of exhaust diesel soot are investigated by inverse gas chromatography and linear solvation energy relationship (LSER) modelling according to their soluble organic fraction content and their time of exposure in oxidative conditions. The results demonstrate the evolution of the adsorptive properties of the studied materials towards volatile compounds during the oxidation under NO2.  相似文献   
2.
This study deals with the development of a laboratory bench for the practical evaluation of catalysts that are useful for the direct conversion of NOx and soot in the exhaust of diesel engines. The employed model exhaust is generated by using a diffusion burner with additionally dosing some gaseous components to the burner gas to obtain a realistic feed composition. The produced soot is extensively characterized by employing thermogravimetry, transmission electron microscopy, N2 physisorption and temperature programmed techniques. The results of the different characterization methods show that the present soot is suitable for the intended catalytic investigations. The simultaneous conversion of NOx and soot is examined like in practice, i.e. the soot is separated from the tail gas by a diesel particulate filter (DPF) that is coated with the catalyst. The deposited soot is then catalytically converted by NOx and O2 to form N2 and CO2. The conversions of NOx and soot are measured by exclusively applying gas analysers, whereby a special experimental procedure is developed to determine the soot removal. Hence, additional soot related analytics are not required. To show the suitability of the constructed bench a Pt/Fe2O3/β-zeolite sample is taken as test catalyst that is reported to be very active in NOx/soot reaction. The measurements performed with and without catalyst clearly show the effect of the used sample in simultaneous NOx/soot conversion. We therefore consider the constructed laboratory bench to be a useful tool for testing and ranking catalytic materials.  相似文献   
3.
The LaCo0.94Pt0.06O3 catalyst is reduced under 5% H2/Ar at different temperatures to get Pt/LaCoO3 with high catalytic activity for soot oxidation. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Brunauer–Emmett–Teller method (BET), X-ray photoelectron spectroscopy (XPS), H2-temperature programmed reduction (H2-TPR), O2-temperature programmed desorption (O2-TPD) and thermogravimetric analysis (TGA) were used to study the physicochemical properties of the catalyst. SEM and TEM results indicate that Pt nanoparticles (<10 nm) are grown homogeneously on the surface of the LaCoO3 matrix after in-situ reduction. XRD shows that the reduced catalyst has a high symmetrical structure. TGA results indicate that all reduced catalysts exhibit an excellent activity, especially the catalyst reduced at 350 °C (T10 = 338 °C, T50 = 393 °C, T90 = 427 °C). And perovskite is the primary active component. According to XPS study, the high symmetrical structure benefits the mobility of oxygen vacancy, and Pt nanoparticles induce the oxygen vacancy to move to its adjacent situation, resulting in more adsorbed oxygen on the surface of the reduced catalyst and increasing the activity. The possible reaction principle is also proposed.  相似文献   
4.
A series of Ce1–xTixO2 mixed oxide catalysts were synthesized by sol-gel method and then loading of noble metal (M = Pt, Rh, Ru) was used for soot oxidation. Ti-doped Ce1–xTixO2 catalysts (x is the molar ratio of Ti/(Ti + Ce) and ranges from 0.1 to 0.5) exhibit much better oxidation performance than CeO2 catalyst, and the Ce0.9Ti0.1O2 catalyst calcined at 500 °C has the best catalysis activity. Each noble metal (1 wt%) was supported on Ce0.9Ti0.1O2 (M/C9T1) and the properties of the catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman, Brunauer–Emmett–Teller (BET) method, and H2-temperature programmed reduction (H2-TPR) results. Results show that the introduction of Ti into CeO2 forming Ti-O-Ce structure enhances the catalytic activity and increases the number of oxygen vacancies at the catalyst surface. The noble metal is highly dispersed over Ce0.9Ti0.1O2, and M/C9T1 catalysts present enhanced activity in comparison to Ce0.9Ti0.1O2. It is found that noble metals can greatly increase the activity of the catalyst and the corresponding oxidation rate of soot can enhance the electron transfer capacity and oxygen adsorption capacity of the catalyst. A small amount of Ti doping in CeO2 can significantly improve the activity of the catalyst, while a large amount of Ti reduces the performance of the catalyst because a large amount of Ti is enriched on the surface of the catalyst, which hinders the contact and reaction between the catalyst and the soot.  相似文献   
5.
This paper deals with the activity of the KCu and KCo catalysts supported on beta-zeolite for the simultaneous NOx/soot removal from a simulated diesel exhaust, containing C3H6 as model hydrocarbon. In order to reveal the effect of potassium, the corresponding monometallic catalysts (Co/beta and Cu/beta) were analyzed and different potassium loadings were used. In addition, for comparative purpose, the performance of a platinum based catalyst (Pt/beta) was studied. All noble-free catalysts show, at 450 °C, a high activity for the simultaneous NOx/soot removal. Among them, K1Cu/beta presents the best global performance at 350 and 450 °C achieving a high soot consumption rate (comparable to platinum catalysts) and the highest NOx reduction. In contrast to platinum catalysts, K1Cu/beta has the advantage that the main reaction products are N2 and CO2.  相似文献   
6.
电站燃煤锅炉受热面污染严重且吹灰不科学的现象普遍存在,极大地影响着锅炉的安全性、经济性和运行的高效性。智能吹灰系统实现了锅炉各受热面积灰程度的实时在线监测和量化处理,对吹灰过程进行智能优化指导,在受热面换热特性得到保证的情况下,最大限度降低吹灰频率,达到节能降耗、提高机组运行经济性和安全性。  相似文献   
7.
This paper deals with the activity of bimetallic potassium–copper and potassium–cobalt catalysts supported on alumina for the reduction of NOx with soot from simulated diesel engine exhaust. The effect of the reaction temperature, the soot/catalyst mass ratio and the presence of C3H6 has been studied. In addition, the behavior of two monometallic catalysts supported on zeolite beta (Co/beta and Cu/beta), previously used for NOx reduction with C3H6, as well as a highly active HC-SCR catalyst (Pt/beta) has been tested for comparison. The preliminary results obtained in the absence of C3H6 indicate that, at temperatures between 250 and 400 °C, the use of bimetallic potassium catalysts notably increases the rate of NOx reduction with soot evolving N2 and CO2 as main reaction products. At higher temperatures, the catalysts mainly favor the direct soot combustion with oxygen. In the presence of C3H6, an increase in the activity for NOx reduction has been observed for the catalyst with the highest metal content. At 450 °C, the copper-based catalysts (Cu/beta and KCu2/Al2O3) show the highest activity for both NOx reduction (to N2 and CO2) and soot consumption. The Pt/beta catalyst does not combine, at any temperature, a high NOx reduction with a high soot consumption rate.  相似文献   
8.
Vanadium oxides supported on γ-Al2O3, SiO2, TiO2, and ZrO2 were studied on their molecular structures and reactive performances for soot combustion. To investigate the effect of different alkali metals on the structures and reactivities of supported-vanadium oxide catalysts, they were doped into the V4/TiO2 catalyst which had the best intrinsic activity for soot combustion in the selected supported vanadium oxide catalysts. The experimental results demonstrated that the catalytic properties of these catalysts depended on the vanadium loading amount, support nature, and the presence or the absence of alkali metals. The spectroscopic analysis (FT-IR and UV–vis) and H2-TPR results revealed that the higher activity of alkali-promoted vanadium oxide catalysts could be related to the ability of alkali metal promoting the redox cycle of the active vanadyl species. TG results showed that adding alkali to Vm/TiO2 catalyst was beneficial to lowering their melting points. Low melting points could ensure the good surface atom migration ability, which would improve the contact between the catalyst and soot. Due to the alkali metal components promoting the redox ability and the mobility of the catalysts, alkali-modified vanadium oxide catalysts could remarkably improve their catalytic activities for soot combustion. The catalytic activity order for soot combustion followed Li > Na > K > Rb > Cs in the catalyst system of alkali-V4/TiO2, and the reason why it followed this sequence was discussed.  相似文献   
9.
Soot的Java程序控制流分析及图形化输出   总被引:1,自引:1,他引:0  
Soot是一个Java编译优化框架,可以利用它实现Java字节码程序的数据流分析和控制流分析。在深入分析Soot控制流生成机制的基础上,详细叙述了利用Soot分析Java类的控制流并生成其控制流图的方法和过程,同时提出了将Soot生成的抽象的控制流图进行图形化输出的方法。  相似文献   
10.
The oxidation kinetics, under different pressures, of soot samples obtained from different liquid fuels and two standards (a commercial black carbon sample and a reference diesel soot) was studied. Soot samples were generated in a flat-flame, premixed burner under heavily-sooting conditions and captured on a water-cooled stabilization plate located above the burner surface. The collected soot was oxidized using a high-pressure thermogravimetric analyzer (HTGA). TGA operation was optimized to reduce mass transfer effects by adjusting the oxidizer flow rate and initial sample mass. Further corrections for mass transfer were accomplished by computing the effectiveness factors for intraparticle, interparticle, and external mass transfer. Two pressures were evaluated (1 and 10 atm) and O2 concentration was varied between 10 and 21%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号