首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
工业技术   1篇
  2020年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
While carbon nanotubes are known as efficient adsorbents for removal of a number of contaminants from water, the possibility of their leaching into drinking water has prevented their application in water treatment. In this study, single walled carbon nanotubes (SWCNT) were sandwiched between two electrospun nanofibre membranes (ENM). The relatively small pore size of the ENM prevented the mechanically entangled nanotubes from passing through and contaminating the water. The performance of the SWCNT-ENM was evaluated in a lab-scale setup for the removal of PPCPs. For this purpose, a feed solution spiked with known concentrations of six PPCPs was passed through the membrane system. The target substances included acetaminophen (ACT), bezafibrate (BZF), iopromide (IOP), diclofenac (DCF), carbamazepine (CBZ), and sulphamethoxazole (SMX). The same test was also conducted using a single contaminant (ACT). Results demonstrated a decrease in the overall percent removal of PPCPs as feed flow rate and PPCP concentration increased. For multi-component feeds containing equal amounts of the aforementioned PPCPs, the overall percent removal decreased from 90.8% to 71.0% when increasing the feed concentration from 30 to 600 μg/L. Experiments using sandwiched powdered activated carbon (PAC) showed that the dynamic adsorption capacity of PPCPs by SWCNT-ENM was higher than that of PAC-ENM, and remained unaffected by the feed composition. In addition, the high porosity of this novel membrane allowed for flow of water with low resistance such that the trans-membrane pressure was found to be as low as 4 kPa at a pure water flux of 330 L/m2h.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号