首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
工业技术   12篇
  2013年   12篇
排序方式: 共有12条查询结果,搜索用时 218 毫秒
1.
We have derived the equations which explicitly express the peak force, F max, and the apparent interfacial shear strength, τ app, measured in the pull-out and microbond tests, as functions of the embedded length. Three types of test geometries were considered: (1) a fiber embedded in a cylindrical block of the matrix material; (2) microbond test with spherical matrix droplets; and (3) pull-out test in which the matrix droplet had the shape of a hemisphere. Our equations include the local interfacial shear strength (IFSS), τ d, and the frictional interfacial stress, τ f, as parameters; the effect of specimen geometry appeared in the form of dependency of the effective fiber volume fraction on the embedded length. The values of τ d and τ f were determined by fitting our theoretical curves to experimental F max (l e) plots by using the least squares method. Our analysis showed how the local IFSS and the frictional interfacial stress affected the measured F max and τ app values. In particular, it was revealed that intervals of embedded lengths could exist in which frictional interfacial stress had no effect on F max and τ app, even if the τ f value was high. We also derived an equation relating the scatter in the interfacial strength parameters (τ d and τ f) to the scatter in τ app, which is experimentally measurable, and proposed a procedure to determine the standard deviations of τ d and τ f from experimental pull-out and/or microbond test data.  相似文献   
2.
Posts are used in various implant designs to contribute to the short- and long-term fixation stability of artificial joints. This study was undertaken to investigate the effect of torque loading on the pull-out response of a steel post inserted into high-density polyethylene (HDPE) material. An experimental apparatus was designed and fabricated to perform mechanical characterization of a steel post embedded in a polymer cylinder with initial interference fit under pull-out, torque and combined torque/pull-out loadings. To analyze the effect of preload applied torque to the load transfer at the post-fixation interface under pull-out loading, we have chosen HDPE material with uniform mechanical and tribological properties. Under pull-out loading, the micro-slip initiation and propagation at the post-HDPE interface was found to be progressive and assuming Coulomb friction at the interface, the friction coefficient was calculated from the measured pull-out force. In the torque loading condition it was found that the torque dropped suddenly from the maximum value to an initial dynamic sliding torque value. The interface behaves like a chemically bonded one, and static and dynamic friction coefficients were determined. It has been found under combined torque/pull-out conditions that in addition to the reduction of the maximum pull-out force, the preload applied torque generates two instabilities in the pull-out behavior. The first one happens once the maximum pull-out force is reached where the load falls to a level required for the post extraction from the HDPE cylinder. The second instability takes place during the extraction process for a residual (critical) implantation length which depends on the preload applied torque value. This latter instability was marked by a sudden rotation of the HDPE cylinder against the steel post.  相似文献   
3.
Abstract

In this work, ozone modification method and air oxidation were used for the surface treatment of polyacrylonitrile (PAN) based carbon fibre. The surface characteristics of carbon fibres were characterised by X-ray photoelectron spectroscopy. The interfacial properties of carbon fibre reinforced PEEK (CF/PEEK) composites were investigated by means of the single fibre pull-out tests. As a result, it was found that IFSS values of the composites with ozone treated carbon fibre are increased by 60% compared with that without treatment. X-ray photoelectron spectroscopy results show that ozone treatment increases the amount of carboxyl groups on carbon fibre surface, thus the interfacial adhesion between carbon fibre and PEEK matrix is effectively promoted. The effect of surface treatment of carbon fibres on the tribological properties of CF/PEEK composites was comparatively investigated. Experimental results revealed that surface treatment can effectively improve the interfacial adhesion between carbon fibre and PEEK matrix. Thus the wear resistance was significantly improved.  相似文献   
4.
Analyses of the elastic stress transfer taking place across the fiber-matrix interface are presented for single- and multi-fiber composite pull-out tests. The multi-fiber composite is treated as a three-cylinder assemblage consisting of a central fiber, a matrix annulus, and a composite medium. The forms of the fiber axial stress and the interface shear stress distributions along the embedded fiber length are determined for single- and multi-fiber composite pull-out tests and their dependences on the fiber volume fraction, the dimensions of the specimen, the fiber-to-matrix modulus ratio, and the embedded fiber aspect ratio are displayed. The stress transfer for a perfectly bonded interface for the two pull-out tests is compared and the difference is clearly shown. In addition, for the single-fiber composite pull-out test, the present theory is compared with some existing theories.  相似文献   
5.
Single-fiber pull-out tests were used for investigation of the interfacial bond strength or toughness and load transfer between polymeric matrices and glass fibers having different diameters. The interfacial bond strength was well characterized by an ultimate interfacial shear strength (τult) whose values were nearly independent of the fiber diameter. The same experiments were also analyzed by fracture mechanics methods to determine the interfacial toughness (Gic). The critical energy release rate (Gic) was a good material property for constant fiber diameter, but Gic for initiation of debonding typically became smaller as the fiber diameter became larger. It was also possible to measure an effective shear-lag parameter, β, characterizing the load transfer efficiency between the fiber and the matrix. β decreased considerably with the fiber radius; this decrease scaled roughly as expected from elasticity theory. The measured results for β were used to calculate the radius of matrix material surrounding the fiber that was significantly affected by the presence of the fiber. The ratio of this radius to the fiber radius (Rm/r f) was a function of the fiber diameter.  相似文献   
6.
The techniques aimed at adhesion strength measurement between reinforcing fibers and polymer matrices (the pull-out and microbond tests) involve the measurement of the force, F max, required to pull out a fiber whose end is embedded in the matrix. Then, this maximum force value is used to calculate such interfacial parameters as the apparent bond strength, τapp, and the local interfacial shear strength (IFSS), τd. However, it has been demonstrated that the F max value is influenced by interfacial friction in already debonded regions, and, therefore, these parameters are not purely 'adhesional' but depend, in an intricate way, on interfacial adhesion and friction. In the last few years, several techniques for separate determination of adhesion and friction in micromechanical tests have been developed, but their experimental realization is rather complicated, because they require an accurate value of the external load at the moment of crack initiation. We have developed a new technique which uses the relationship between the maximum force and the embedded length ('scale factor') to separately measure fiber-matrix interfacial adhesion and friction. Using the equation for the current crack length as a function of the applied load, based on a stress criterion of interfacial debonding, we modeled the pull-out and microbond experiments and obtained the maximum force value versus the embedded length. By varying τd and interfacial friction, τf, to fit experimental plots, both interfacial parameters were estimated. The micromechanical tests were modeled for three types of specimen geometries (cylindrical specimens, spherical droplets, and matrix hemispheres in the pull-out test) with different levels of residual thermal stresses and interfacial friction. The effect of all these factors on the experimental results is discussed, and the importance of specimen geometry is demonstrated. One of the most interesting results is that the 'ultimate' IFSS (the limiting τapp as the embedded length tends to zero) is not always equal to the 'local' bond strength.  相似文献   
7.
A new approach to experimental data treatment in the pull-out and microbond tests has been developed. It uses the relationship between the maximum force recorded in these tests and the embedded length ('scale factor') to separately determine adhesional interfacial parameters (critical energy release rate, local bond strength) and interfacial friction in debonded regions. The new method does not require the measurement of the debond force, which corresponds to interfacial crack initiation, and is, therefore, much more convenient and simpler than 'direct' techniques involving continuous monitoring of crack growth. Using the equation for the current crack length as a function of the load applied to the fiber, based on a fracture mechanics analysis of interfacial debonding, we modeled the pull-out and microbond experiments and obtained the maximum force versus the embedded length. By varying the critical energy release rate and interfacial frictional stress to fit experimental plots, both interfacial parameters were determined for several fiber-polymer pairs. Effects of specimen geometry, residual thermal stresses, and interfacial friction on the measured values are discussed. The results are compared with those obtained with our similar stress-based approach. The energy criterion works when the embedded length is not very short, and in this range of embedded length it is better than the stress criterion. Both criteria can be complementarily used for interface characterization.  相似文献   
8.
Poly(arylene ether phosphine oxide)s (PEPO) were prepared and utilized to coat carbon fibers to enhance the interfacial adhesion with vinyl ester resins. For comparison, poly(arylene ether sulfone) (PES), Udel® P-1700, and Ultem® 1000 were also used. The interfacial shear strength (IFSS) of thermoplastic polymer-coated fibers was measured via microbond pull-out tests. The interfacial adhesion between thermoplastics and as-received carbon fibers was also measured in order to investigate the adhesion mechanism. Thermoplastic polymer-coated fibers exhibited a higher IFSS than the as-received fibers with vinyl ester resin, and with thermoplastic polymers. PEPO-coated fibers showed the highest IFSS, followed by Udel®, PES, and Ultem®-coated fibers. The high IFSS obtained with PEPO coating could be attributed to the phosphine oxide moiety, which provided a strong interaction with functional groups in the vinyl ester resin and also on carbon fibers. A diffusion study revealed the formation of a clear interphase not only between PEPO and the vinyl ester resin, but also between Udel® (PES or Ultem®) and the vinyl ester resin, although the morphology of the two interphases differed greatly.  相似文献   
9.
Load transfer ability of the fibre–matrix interface is well known to mainly control the mechanical behaviour of fibre-reinforced materials. This load transfer phenomenon is of great importance in dentistry when a post is used for fixing a ceramic crown on the tooth. The pull-out test has been well accepted as the most important micromechanical test for evaluating the interaction properties between the fibre and matrix. In this study, a finite element model is developed to analyse the pull-out process of a steel fibre from an epoxy matrix. Based on the pull-out force–displacement curves, developed in our previous experimental work, specific load transfer laws at the fibre–matrix interface have been proposed for each stage of the pull-out process, i.e., before and after fibre–matrix debonding. Predicted initial extraction forces for different implantation lengths were fitted to experimental values and an initial interference fit of 4 μm was determined. An interfacial shear strength of 21 MPa was then determined by fitting the predicted debonding forces for different implantation lengths to the experimental values. According to the load transfer laws considered, analysis of the interfacial shear stress indicates that fibre–matrix debonding initiates simultaneously at both the lower and upper extremities of the interface.  相似文献   
10.
Adhesion of epoxy-polysulfone (PSF) matrices to glass fibres of 12–30 μm in diameter was studied under both quasi-static and cyclic loadings. A pull-out technique was used for adhesion measurement. It was shown that incorporation of PSF into epoxy resin changed its adhesion to fibres. A maximum was observed in the adhesion strength vs. PSF content dependence at 10 wt% thermoplastic concentration. The results obtained were compared with the data on the epoxy-PSF matrices adhesion to thick steel wire (d = 150 μm) and Nylon-6 fibres (d = 250 μm). Similar values of the adhesion strength increase (22–25%) confirmed that all the changes at the interface were connected primarily with the matrix. A new preferably non-destructive cyclic loading technique was used to test the systems under cyclic loading at varying force amplitudes, frequencies and displacement amplitudes. In this technique the interphase behaviour is characterised by two variables: by the phase angle between the deformation applied to the matrix and the force transferred by the matrix to the fibre, and also by the amplitude of this force. Minimal force amplitudes were observed for the joints with 10 wt% polysulfone. Moreover, phase-angle values for epoxy-10% polysulfone joints were minimal among all the systems investigated. Increase in the number of loading cycles caused much more damage to unmodified epoxy matrix than that to epoxy-polysulfone matrices. Thus, modification of epoxy resin by polysulfone enhanced its adhesion to fibres under both quasistatic and cyclic loadings, especially for epoxy-10% polysulfone matrix. The possible mechanism of the phenomenon observed is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号